APP下载

一种电容式触摸控制方法研究与设计

2014-10-21滕莉庞晓东

电子世界 2014年23期
关键词:灵敏度

滕莉 庞晓东

【摘要】描述了一种电容式触摸控制按键技术的方法研究,简要介绍了电容式触摸感应原理,并以理论为基础设计了一种触摸按键。对电容式触摸感测总体设计方案做了介绍,详细论述了触摸按键电路设计与结构设计中的关键技术及设计原则,以实验测试结果证明了方案的可行性,同时结合研发中遇到的问题给出了解决方案。

【关键词】触摸控制;电容式;灵敏度;隔离保护介质

A method research and design of the capacitive touch control

TENG Li,PANG Xiao-dong

(The First Research institute of the Ministry of Public Security,Beijing 102200)

Abstract:The paper describes a method research of the capacitive touch control,introduces the principle of capacitive touch sensing briefly and designs a touch button basing on the principle.In addition,the overall design of capacitive touch sensing is presented,the key technologies and design rules about the circuit and structure are described in detail.Experimental result shows that this design is feasible.The solution for the problems in the process of research is also presented.

Key words:touch control;capacitive;sensitivity;isolation protective mediums

觸摸控制作为高端的电子控制方式,已在许多领域得到了应用,如触摸显示屏、触摸路灯开关、仪器仪表控制面板等。对使用者来说,触摸控制器具有美观、操作方便、易清洁的优点,又因为采用非接触式按键技术,理论上使用寿命可以无限长,不像普通按键只有几十万次的机械寿命,并且可靠性不会随时间增加而降低[1]。根据不同的工作原理,触摸控制可分成以下几类:电波式(如表面声波)、电阻式、光学式(如红外线)、电容式、电感式、电磁式等。每一类都有其各自的优缺点和适用场合[2]。其中,电容式触摸按键技术已经成为触摸感应技术的主流,适用范围更为广泛。电容式触控感应技术以其无机械损耗、寿命长、灵敏度高、节省空间和触摸动作丰富等优点得到越来越广泛的应用,与此同时,半导体厂商也不断地推出相应技术的IC以简化硬件设计人员的开发。本文所设计的触摸按键就是基于Atmel QTouch技术实现的。

1.电容式触摸感应原理

电容式触摸是利用人体的电流感应进行工作的。它将人作为假想的接地物(零电势体),感应电极与地构成一个感应电容,在周围环境不变的情况下电容值固定为微小值Cp,具有固定的充放电时间;当触摸隔离保护介质(面板)时,由于人体电场,人的手指(隔着隔离保护介质)和感应电极形成一个耦合电容Cf,这样就会改变固有的充放电时间。通过测量充放电时间的改变即可检测是否有按键被按下[3]。根据电容定义:

(1)

式中ε0为真空介电常数,εr为隔离保护介质的介电常数,A为按键区域面积,一般为直径小于10mm的圆形,T为隔离保护介质的厚度,通常为几个mm,由公式(1)可以计算得到pF级的Cf值。

世界知名电子元器件供应商推出了众多的专业芯片,在本设计中选用Atmel公司基于QTouch技术的控制芯片。Atmel QTouch的电容感应工作是基于电荷-传输(charge-transfer)原理,它通过开关电容的方式来判断在触摸过程中感应电极的电容变化,可以实现一个能够测量电容量毫皮法级(千分之一pF)变化的高分辨率的测量系统[4],因此Atmel QTouch控制器完全能够精确测量pF级的耦合电容Cf。QTouch IC和简单按键电极之间单连接来检测触摸,器件对未知电容的感测电极充电到已知电位。电极通常是印刷电路板上的一块铜区域。在1个或多个电荷-传输周期后测量电荷,就可以确定感测板的电容[5]。

2.设计方案及关键技术

2.1 总体设计

触摸按键由感测部分(PCB板)、隔离保护介质(绝缘层)和光线扩散介质组成,如图1所示。

图1 触摸按键结构示意图

感测部分的核心是ATMEL的QProx QT113A控制器。ATMEL QTouch控制器允许自耦电容型和互耦电容型两类感应器,本方案采用自耦电容型感应器。感应器从感应方向分类又可以分为3种:无方向感应器、单方向感应器和双方向感应器。本文设计的开关按键只感应一个点的动作,属于无方向类型。当讨论一个感应器设计的时候,用户需要在感应类型和方向分类所构成的6种可能中进行合理组合[4]。本触摸控制根据上述确定的感应器类型故选用QProx QT113A芯片作为控制器。

隔离保护介质即面板,通常选用玻璃、有机玻璃(PMMA)、聚丙烯树脂等。由公式(1)可以明确得到,更薄的隔离保护介质和高介电常数的介质可以提高电容及响应的充电电荷保有量,从而带来更高的增益和更好的信噪比。设计人员可以根据实际情况及外观要求选择介质。本方案选用4mm厚的有机玻璃,将有机玻璃背面镂空喷漆,形成功能图标,图标均有背景灯光透过,这样可使功能按键更显著。

隔离保护介质与电路板之间采用ABS板作为光线扩散介质,实现对图标的背景灯光扩散。如果将隔离保护介质与电路板直接装配,则背景灯光不能完全覆盖整个图标,从外观上看是一个光斑,这是因为点光源所发出光线没有转变成面光源。故采用在隔离保护介质与电路板间加ABS板,来达到将点光源转变为面光源的目的,去除光斑,使得外观更加美化,同时还能降低光源亮度,减少刺眼程度。

2.2 关键技术

触摸式按键设计在电路板上元器件位置、布线,以及结构、选材等方面都十分考究,在任一方面设计的偏差都会影响其灵敏度,以下对设计过程中需要注意的几项原则进行详细论述。

2.2.1 PCB设计与布局

触摸控制IC外围元器件布局和走线设计十分关键。所有无源元件在物理空间条件允许的条件下应尽可能靠近控制芯片。如果触摸控制IC及其它无源器件置于顶层,则在底层设计感应电极,并应尽可能多的将传感信号线布置到顶层,底层可用来布设普通信号线。由图2可以看到本方案电路板布有感应电极的一侧没有其他元器件。需要特别注意,应该保证控制IC对应的底层没有布设任何感应电极,同样,一个通道的信号线对应的底层也不能布设其他传感通道的感应电极 [6]。图3是电路板顶层设计,圆形虚线代表感应电极在底层的位置,矩形实线代表控制IC在顶层的位置,按照上述原则控制芯片与电极不同层且位置错开。此外,自耦类型的感应器到控制器的连线在不影响RC时间常数的前提下应该越细越好,该连线应小于150mm,连线也是对触摸敏感的,它就是感应器的一部分,更长的连线会引入噪声并降低感应灵敏度[4]。电容式触摸IC外围电路的设计还要求电子元器件与芯片间的走线远离电源和地线,以及铺铜部分,如电极。

图2 感应电极设计

感应电极的设计是决定触摸控制灵敏度的重要因素之一。电极的形状和大小应紧密配合被感应物体的大小。按照电极最外边缘应大出触摸边缘2-3mm的设计原则,以手指触碰为例,建议设计电极大小为8到10mm的方块或圆片。增大感应电极建议不要超过15×15mm2,因为过大的电极不但会降低灵敏度,而且会增加对噪声的易感性[6]。电极形状可设计成各种几何形状,例如方形、圆形、三角形,以便具有不同功能和应用。本触摸按键感应电极设计如图2所示。

图3 控制芯片与感应电极位置设计

2.2.2 结构设计

触摸按键的面板必须选用绝缘材料,如上述所列,按键正上方1mm以内不能有金属,50mm以内的金属必须接地,否则会影响到灵敏度。在生产过程中,要保持面板的材质和厚度不变,面板的表面喷涂必须使用绝缘的涂料[7]。

当采用如本设计一样将三种(FR4板、ABS板和有机玻璃板)甚至更多种材质叠放在一起时,要确保相邻两层之间无缝隙,否则将容易导致内部空间的湿度变化或空气介质发生变化,造成漂移,进而影响按键的灵敏度和可靠性。如果所应用的环境恶劣建议使用透明胶将各层压紧。此外,各个结构件间良好的结合也是保证灵敏度的重要因素。如果触摸时,电极、ABS板、有机玻璃板间有相对滑动,即使是100微米很小的移动,也会带来灵敏度不稳定。发生位移后需要再次上电进行校准。可通过超声波焊接、粘合剂、螺丝钉紧固等方法将其固定。

触摸式按键背光照明设计,通常在按键的中间挖空,使PCB上的LED能照射到面板上镂空的图标或字符。图2电极设计中可以看到中央位置处的LED。注意小孔要尽量小,孔越大损失的敏感度就越多。最大孔径可依据按键直径来设计,如表1所列。

表1 照明LED安装孔径尺寸

面板的外观设计需要注意的是,进行喷涂修饰时,要事先了解这种装饰原料的导电性能,否则即便是外观设计也会对按键性能产生影响。作者选择了两种物质做了实验对比。一种是采用在有机玻璃材料背面进行丝网印刷,介质是油墨,虽然遮光效果佳,但灵敏度急剧下降,甚至为零,这与油墨中含有金属离子,从而具有金属属性有关,所以油墨会严重影响触摸按键的灵敏度,对于本设计不宜采用。另一种选用喷黑漆作为底色,不仅遮光效果好,灵敏度也比较理想。实验结果表明,采用不同喷涂材料对灵敏度影响极大,原因是不合理的介质会导致电场传导的连续性被破坏。本设计中承载感应电极的基材电路板FR4,其介电常数为4.2,作为隔离保护介质的有机玻璃其介电常数为4,油漆的介电常数为3.5,ABS板的介电常数为3.04,因此电场就具有较好的连续性。

3.测试实验

在设计之初由于缺乏对介质导电性能的了解,使用了油墨对外观进行喷涂装饰,破坏了组成触摸按键结构的各个部件间电场的连续性,导致无输出,经过调整所选材料,使用黑漆喷涂,测试输出正常。对于灵敏度的调节一方面可以从控制芯片的GAIN引脚的输入电平调整,若灵敏度过高可从高电平转为低电平,这种调整可以明显改变灵敏度;另外一方面可以从调节收集电容Cs和Cx的值来微调灵敏度,Cs值越大Cx值越小则灵敏度越高,但注意Cs在10nF~500nF,Cx在0~100pF[8],若超出这个范围则无输出。对触摸按键单板测试无误后,放于某仪器设备上用于控制照明开关,经过一段时间的观察发现有时会出现上电瞬间灯闪一下的现象,捕捉到的图形如图4,触摸按键受到干扰时间约为200ms。在应用环境中干扰无处不在,有来自仪器内部的也有环境中存在的,对于已经设计完成的触摸式按键电路板,可以通过磁环有效地屏蔽一部分干扰。本应用选用TDK的ZCAT 2132-1130磁环固定在数据线缆上问题得到解决。

图4 触摸控制受干扰波形图

4.结论

基于Atmel QTouch技术设计的一种触摸开关控制方案,电路与结构上依据设计过程中的原则和规范,经过实验证明可以有效地实现开关控制,能够在一定范围内调节灵敏度以适应不同应用的需求。触摸式控制设计重点在于电路元器件、走线和电极的布局,以及结构件的选材,要了解每个部件的电性能,只有做好每个细节,组装后的触摸按键才能在灵敏度和抗干扰上得到理想的效果。

参考文献

[1]韩俊,戎蒙恬.低成本电容式触摸控制设计[J].信息技术2006,8:42-45.

[2]周志永,胡建人.低成本电容式触摸按键设计[J].机电工程2011,28(3):365-368.

[3]MARIN R E,SIMONSON R K.Capacitive keyswitch sensor and method,US,3931610[P].1976.

[4]Touch Sensors Design Guide.Atmel Corporation 2009.

[5]鲁冰.电容式触摸屏系统解决方案[J].电子产品世界2008,15(12).

[6]黄梓佑,崔景诚等.S-Touch电容式触摸控制器PCB布局指南[J].电子产品世界,2009,16(8):12-16.

[7]陈斌.电容式触摸按键设计與专用芯片应用[J].电子世界,2014(16).

[8]Datasheet-QPro QT113/113A CHARGE-TRANSFER TOUCH SENSOR.okDatasheet.com 2001.

作者简介:

滕莉(1981—),女,工程师,主要研究方向:测控技术。

庞晓东(1973—),男,副研究院,主要研究方向:嵌入式硬件开发。

猜你喜欢

灵敏度
前列腺癌应用动态增强MRI联合DWI的诊断效果分析
超声筛查Ⅲ级系统在胎儿畸形中的诊断价值分析
基于ADS—B的射频前端接收技术研究
阻力系数为定值时弹道参数对气动参数灵敏度分析
甘露醇激发试验和组胺激发试验对支气管哮喘的临床应用价值
增强CT在结肠肿瘤诊断中的灵敏度与特异度研究
航空发动机叶片的极值响应面法可靠性分析
发电机定子接地保护研究
阴道彩超三维成像在诊断子宫畸形诊断中的应用体会
数值越高,音箱越好?走出灵敏度与信噪比的误区