APP下载

正交频分复用无源光网络

2014-10-21何永琪林邦姜李巨浩

中兴通讯技术 2014年5期
关键词:偏振无源色散

何永琪 林邦姜 李巨浩

认为当采用低频段的射频资源时,色散导致的双边带功率衰落对正交频分复用无源光网络(OFDM-PON)的影响很小。基于时分复用(TDM)架构的OFDM-PON,充分利用正交频分复用(OFDM)技术的优势与TDM架构的无色性,与现有的以太网无源光网络(EPON)、千兆比无源光网络(GPON)兼容性高,是解决上行无色性传输的最优方案。基于OFDM的时波分复用无源光网络(TWDM-PON)充分利用了OFDM调制优势,用来提升单载波容量,在不改变TWDM-PON系统结构情况下,实现100 Gbit/s的高速接入,是未来无源光网络的重要候选方案。

正交频分复用;无源光网络;时分复用;时波分复用

In this paper, we propose that the power fading of double sideband for OFDM-PON induced by chromatic dispersion is small when using low radio frequency (RF). The OFDM-PON based on time division multiplexing (TDM) architecture is the best solution for uplink colorless transmission. This makes full use of the advantages of OFDM technique and colorless TDM architecture and is highly compatible with existing EPON and GPON. Time wavelength division multiplexing (TWDM) PON based on OFDM is a strong candidate for future PON, which makes full use of OFDM modulation to increase the capacity of a single carrier without changing the structure of TWDM-PON system, achieving 100 Gbit/s high-speed access.

orthogonal frequency division multiplexing; passive optical network; time division multiplexing; time wavelength division multiplexing

随着云计算、高清视频、在线游戏等新互联网业务的爆炸性增长,无源光网络亟需升级以支持更高的数据速率。基于正交频分复用多址(OFDMA)的无源光网络(PON)技术自2007年以来受到了众多研究机构的关注[1]。OFDMA-PON的基本原理如图1所示。在下行传输中,OFDM信号由数字信号处理(DSP)芯片生成,通过光强度调制器调制到[λdw]上,调制生成的光双边带信号经过光纤传输,广播给所有的用户。在用户端,光信号由光接收机实现光电转化,电正交频分复用(OFDM)信号由DSP芯片实现解调。下行信号的带宽被诸多正交的子载波划分。每一个光网络单元(ONU)分配到一个子信道,包括一个或多个子载波。在上行传输中,每一个用户的数据被调制到特定的子载波上,其他的子载波上不调制数据,生成的电OFDM信号被调制到不同的波长上。所有上传的信号由分光器合束,再经光纤传输到中心局。在光线路终端(OLT)端,一个光接收机实现所有用户信号的接收。由于子载波之间的正交性,不同用户之间的信号不存在串扰。OFDMA-PON的主要优势为:

(1)子载波的频谱部分相互交叠,结合高阶调制格式,易于实现高频谱效率。

(2)发射端与接收端的数字信号处理方法可以消除各种线性损伤,如光纤中的色散与偏振模色散。

(3)每一个子载波可视为一个透明的输送管道,用以传送任意的网络数据。根据网络需求,子载波可以被动态地分配给不同的网络服务。

此外,这种正交多址的复用方式可以与时分多址结合在时域与频域实现动态带宽分配。

尽管OFDMA-PON有着如此多的技术优势,但也存在着不少技术难题,下面对相关技术进行分析。

1 色散引起光双边带信号

功率衰落

色散对光双边带传输的影响如图2所示。电OFDM信号经过强度调制生成一个光双边带信号,包括一个光载波与两个信号边带。两个信号边带上的数据信息是相同的。在背靠背传输中,光接收机接收到的射频信号是两个信号边带功率的叠加,不存在功率衰落。与单边带传输相比,双边带传输有3 dB的功率增益。由于光纤色散的影响,两个边带经过光纤传输后,有着不同的相位延迟。接收机接收到的射频信号是两个边带信号的矢量叠加。与背靠背传输相比,射频信号功率变小。当两个边带的相位差为180度时,接收到的电信号功率甚至为0。光纤传输后,接收到的射频信号的功率,可由公式(1)给出:

[P ∞cosπLDλc2fr2c1-2πarctan(αMz)] (1)

其中L为光纤的长度,D为光纤色散系数,fr为射频信号的频率,[λc]为光载波波长,[αMz]为调制器的啁啾系数[2]。单边带传输可以避免这种功率损伤,但是会增加发射机的复杂度[3-4]。通过仿真分析,笔者认为对于20~100 km的接入系统,采用低频段的射频资源(0~10 GHz),色散引起的双边带功率损伤很小。结合高阶调制格式,我们在26.7 km与100 km标准单模光纤上成功实现了20 Gbit/s双边带OFDM-PON[5]。

2 无色上行传输endprint

当采用正交频分多址接入,上行相近的波长会在光接收机中相互拍频,拍频产生的接收光信号极其不稳定。因此,ONU在上行传输时需要不同的波长来避免拍频噪声。这大大增加了系统成本与波长管理维护的难度。当前实现无色上行传输的方法主要有:可调谐光源;波长重用;反射性调制器,如反射半导体光放大器(RSOA)[6-8]。可调谐光源复杂度大,成本高,不适合接入系统。在波长重用方案中,上行波长经过两次链路传输,使得上行传输的功率预算不足。而RSOA器件带宽较小,较难产生性能良好的OFDM信号。总的来说,这些解决方案都不太成熟,在成本或传输性能上存在不足。为了解决该无色传输难题,笔者提出了TDM-OFDM-PON的系统架构[9],如图3所示。其下行传输可采用正交频分多址的接入方式,亦可采用频分与时分相结合的混合接入方式,而上行传输则采用时分多址的方式对带宽资源进行分配。TDM-OFDM-PON充分利用OFDM技术优势与TDM架构的无色性,与现有的EPON、GPON兼容性高。就当前来看,基于TDM架构的OFDM-PON是解决上行无色性传输的最优方案。

3 面向40 Gbit/s与100 Gbit/s

的高速传输

高速OFDM信号的产生严重依赖于DSP器件,特别是数模(DAC)、模数转换(ADC)芯片。目前,DAC、ADC芯片在速度与精度上都受限,较难实现高速率的转换;此外,高速DSP芯片比较昂贵,ONU的成本较难控制。为了降低DSP芯片的带宽需求,NEC(美国)实验室提出了一种偏振复用的解决方案。该方案结合多输入多输出(MIMO)算法,可以实现40 Gbit/s的偏振复用OFDM-PON[10]。笔者也提出了一种偏振交织的解决方案[11],该方案是偏振复用的改良方案。相较于偏振复用,偏振交织有着较低的系统复杂度。结合多波带技术,这两种方案均可实现100 Gbit/s的OFDM-PON[12-13]。然而,偏振复用与偏振交织的OFDM-PON系统的复杂度较高,需要一定的偏振控制技术,不具有成本优势。富士通公司采用65 GS/s的高速非商用DAC与ADC成功实现了100 Gbit/s的OFDM接入系统[14]。这种高速的DAC与ADC成本较高,短期内得不到商用。在2012年4月的全业务接入论坛(FSAN)会议上,综合考虑技术成熟度、成本、复杂度,时波分复用无源光网络(TWDM-PON)成为了NG-PON2的主流候选方案[15]。TWDM-PON采用4个XG-PON以WDM方式混合来实现40 Gbit/s下行速率和10 Gbit/s上行速率。ONU端的滤波器用以选择下行波长,而激光器可调谐到任意上行波长上。那么OFDM技术在未来的接入系统中是否会被弃用?笔者认为,随着集成技术与DSP技术的发展,基于DSP的调制在未来的100 Gbit/s以上速率的接入系统中会扮演一个十分重要的角色。基于开关键控(OOK)调制的TWDM-PON系统,由于光纤色散的影响,其单载波容量很难升级。因此,只能使用多载波技术来升级系统的容量(堆叠更多的XG-PON),这对ONU端的发射机与接收机的调谐性提出了更高的要求。OFDM作为一种优秀的调制格式,可以很好提升单载波传输容量。文献[16]给出了基于OFDM的4×25 Gbit/s TWDM-PON。在该结构中,每一时隙传输的是OFDM符号,而不是OOK信号。结合高阶调制,单载波的速率很容易达到25 Gbit/s。在下行传输中,4个25Gbit/s OFDM的信号,经WDM复用器合束,再经光放大,广播给所有用户。用户首先对波长进行选择,再选择相应的时隙。在上行传输中,用户在相应的时隙发送OFDM符号,可调谐激光器调谐到相应的上行波长上。在OLT端,上行信号经过光放大,由WDM解复用器分开4个上行波长,分别进行数据解调。基于OFDM的TWDM-PON充分利用了OFDM技术优势,提升单载波容量,在不改变TWDM-PON系统结构下,实现100 Gbit/s的高速接入,是未来无源光网络的有力候选方案。

4 结束语

在新型互联网业务的驱动下,未来的无源光网将面向更高速率更高容量。随着集成技术与数字信号处理技术的发展,OFDM技术在未来的接入系统中会扮演一个十分重要的角色。正交频分多址的接入方式,很难实现低成本的无色上行传输。OFDM作为一种优秀的调制方法,结合成熟的TDM技术以及多载波技术,是未来100 Gbit/s以上速率无源光网络的有力候选方案。

参考文献

[1] QIAN D Y, HU J Q, YU J J. Experimental Demonstration of a Novel OFDM-A Based 10Gbit/s PON Architecture [C]//Proceedings of the 2007 European Conference on Optical Communications (ECOC), Oct 6-7, 2007, Calgary, Canada. New York, NY, USA:ACM, 2007: 5.

[2] SMITH G H, NOVAK D, AHMED Z. Overcoming chromatic dispersion effects in fiber-wireless systems incorporating external modulators [J]. IEEE Trans. Microwave Theory Tech., 1997,45(8): 1410-1415.

[3] CHOW C W, YEH C H, LO S M G, LI C, TSANG H K. Longreach radio-over-fiber signal distribution using single-sideband signal generated by a silicon-modulator [J]. Opt. Express, 2011,19(12): 11312-11317.endprint

[4] WANG C H, CHOW C W, YEH C H, WU C L, CHI S, LIN C. Rayleigh noise mitigation using single sideband modulation generated by a dual-parallel MZM for carrier distributed PON [J]. IEEE Photon. Technol. Lett., 2010,22(11): 820-829.

[5] LIN B J, LI J H, YANG H, WAN Y S, HE Y Q, CHEN Z Y. Comparison of DSB and SSB transmission for OFDM-PON [J]. IEEE/OSA Journal of Optical Communications and Networking, 2012,4(2): 94-100.

[6] QIAN D, CVIJETIC N, HU J, WANG T. A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks [J]. IEEE Photon. Technol. Lett., 2009,21(17):1-5.

[7] LEE J H, LEE K, LEE S B, KIM C H. Extended-reach WDM-PON based on CW supercontinuum light source for colorless FP-LD based OLT and RSOA-based ONUs [J]. Opt. Fiber Technol., 2009,15(3): 310-319.

[8] CHOW C W, YEH C H, WANG C H, SHIH F Y, CHI S. Rayleigh backscattering performance of OFDM-QAM in carrier distributed passive optical networks [J]. IEEE Photon. Technol. Lett., 2008,20(22): 1848-1850.

[9] YANG H, LI J H, LIN B J, WAN Y S, GUO Y, ZHU L X, LI L, HE Y Q, CHEN Z Y. DSP-Based Evolution From Conventional TDM-PON to TDM-OFDM-PON [J]. Journal of Lightwave Technology, 2013,31(5): 2735-2741.

[10] QIAN D, CVIJETIC N, HU J, WANG T. 40-Gbit/s MIMO-OFDM-PON Using Polarization Multiplexing and Direct-Detection [C]//Proceedings of the 2009 Opt. Fiber Commun. (OFC), Oct 9-11, 2009, Calgary, Canada. New York, NY, USA:ACM, 2009: 3.

[11] LIN B J, LI J H, HUI Y, JIANG S, ZHU L X, HE Y Q, CHEN Z Y. Experimental demonstration of optical MIMO transmission for SCFDM-PON based on polarization interleaving and direct detection [J]. Optics Communications, 2012,285(6): 5163-5168.

[12] LIN B J, LI J H, HUI Y, WAN Y S, LUO Y B, ZHANG P, HE Y Q, CHEN Z Y. 100-Gbit/s Multi-band OFDM-PON Based on Polarization Interleaving and Direct Detection [C]//Proceedings of the ACP 2012, Oct 6-7, 2012, Calgary, Canada. New York, NY, USA:ACM, 2012:5.

[13] QIAN D, CVIJETIC N, HU J, WANG T. 108 Gbit/s OFDMA-PON with polarization multiplexing and direct detection [J]. Light Technol., 2010,28(4): 484-493.

[14] TAKAHARA T, TANAKA T, NISHIHARA M, KAI Y, LI L, TAO Z N, RASMUSSEN J C. Discrete Multi-Tone for 100 Gbit/s Optical Access Networks [C]//Proceedings of the OFC 2014, Oct 6-7, 2014, Calgary, Canada. New York, NY, USA:ACM, 2014:1.

[15] LUO Y Q, ZHOU X P, EFFENBERGER F, YAN X J, PENG G K, QIAN Y B, MA Y R. Time- and Wavelength-Division Multiplexed Passive Optical Network (TWDM-PON) for Next-Generation PON Stage 2 (NG-PON2) [J]. Journal of Lightwave Technology, 2013,31(4): 484-493.

[16] LUO Y B, LIN B J, HUI Y, LI J H, HE Y Q, CHEN Z Y, LI Z B. Symmetric 100-Gbit/s TWDM-PON with DSB OFDM Modulation [C]//Proceedings of the OFC 2014, Oct 6-7, 2014, Calgary, Canada. New York, NY, USA:ACM, 2014:61.endprint

[4] WANG C H, CHOW C W, YEH C H, WU C L, CHI S, LIN C. Rayleigh noise mitigation using single sideband modulation generated by a dual-parallel MZM for carrier distributed PON [J]. IEEE Photon. Technol. Lett., 2010,22(11): 820-829.

[5] LIN B J, LI J H, YANG H, WAN Y S, HE Y Q, CHEN Z Y. Comparison of DSB and SSB transmission for OFDM-PON [J]. IEEE/OSA Journal of Optical Communications and Networking, 2012,4(2): 94-100.

[6] QIAN D, CVIJETIC N, HU J, WANG T. A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks [J]. IEEE Photon. Technol. Lett., 2009,21(17):1-5.

[7] LEE J H, LEE K, LEE S B, KIM C H. Extended-reach WDM-PON based on CW supercontinuum light source for colorless FP-LD based OLT and RSOA-based ONUs [J]. Opt. Fiber Technol., 2009,15(3): 310-319.

[8] CHOW C W, YEH C H, WANG C H, SHIH F Y, CHI S. Rayleigh backscattering performance of OFDM-QAM in carrier distributed passive optical networks [J]. IEEE Photon. Technol. Lett., 2008,20(22): 1848-1850.

[9] YANG H, LI J H, LIN B J, WAN Y S, GUO Y, ZHU L X, LI L, HE Y Q, CHEN Z Y. DSP-Based Evolution From Conventional TDM-PON to TDM-OFDM-PON [J]. Journal of Lightwave Technology, 2013,31(5): 2735-2741.

[10] QIAN D, CVIJETIC N, HU J, WANG T. 40-Gbit/s MIMO-OFDM-PON Using Polarization Multiplexing and Direct-Detection [C]//Proceedings of the 2009 Opt. Fiber Commun. (OFC), Oct 9-11, 2009, Calgary, Canada. New York, NY, USA:ACM, 2009: 3.

[11] LIN B J, LI J H, HUI Y, JIANG S, ZHU L X, HE Y Q, CHEN Z Y. Experimental demonstration of optical MIMO transmission for SCFDM-PON based on polarization interleaving and direct detection [J]. Optics Communications, 2012,285(6): 5163-5168.

[12] LIN B J, LI J H, HUI Y, WAN Y S, LUO Y B, ZHANG P, HE Y Q, CHEN Z Y. 100-Gbit/s Multi-band OFDM-PON Based on Polarization Interleaving and Direct Detection [C]//Proceedings of the ACP 2012, Oct 6-7, 2012, Calgary, Canada. New York, NY, USA:ACM, 2012:5.

[13] QIAN D, CVIJETIC N, HU J, WANG T. 108 Gbit/s OFDMA-PON with polarization multiplexing and direct detection [J]. Light Technol., 2010,28(4): 484-493.

[14] TAKAHARA T, TANAKA T, NISHIHARA M, KAI Y, LI L, TAO Z N, RASMUSSEN J C. Discrete Multi-Tone for 100 Gbit/s Optical Access Networks [C]//Proceedings of the OFC 2014, Oct 6-7, 2014, Calgary, Canada. New York, NY, USA:ACM, 2014:1.

[15] LUO Y Q, ZHOU X P, EFFENBERGER F, YAN X J, PENG G K, QIAN Y B, MA Y R. Time- and Wavelength-Division Multiplexed Passive Optical Network (TWDM-PON) for Next-Generation PON Stage 2 (NG-PON2) [J]. Journal of Lightwave Technology, 2013,31(4): 484-493.

[16] LUO Y B, LIN B J, HUI Y, LI J H, HE Y Q, CHEN Z Y, LI Z B. Symmetric 100-Gbit/s TWDM-PON with DSB OFDM Modulation [C]//Proceedings of the OFC 2014, Oct 6-7, 2014, Calgary, Canada. New York, NY, USA:ACM, 2014:61.endprint

[4] WANG C H, CHOW C W, YEH C H, WU C L, CHI S, LIN C. Rayleigh noise mitigation using single sideband modulation generated by a dual-parallel MZM for carrier distributed PON [J]. IEEE Photon. Technol. Lett., 2010,22(11): 820-829.

[5] LIN B J, LI J H, YANG H, WAN Y S, HE Y Q, CHEN Z Y. Comparison of DSB and SSB transmission for OFDM-PON [J]. IEEE/OSA Journal of Optical Communications and Networking, 2012,4(2): 94-100.

[6] QIAN D, CVIJETIC N, HU J, WANG T. A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks [J]. IEEE Photon. Technol. Lett., 2009,21(17):1-5.

[7] LEE J H, LEE K, LEE S B, KIM C H. Extended-reach WDM-PON based on CW supercontinuum light source for colorless FP-LD based OLT and RSOA-based ONUs [J]. Opt. Fiber Technol., 2009,15(3): 310-319.

[8] CHOW C W, YEH C H, WANG C H, SHIH F Y, CHI S. Rayleigh backscattering performance of OFDM-QAM in carrier distributed passive optical networks [J]. IEEE Photon. Technol. Lett., 2008,20(22): 1848-1850.

[9] YANG H, LI J H, LIN B J, WAN Y S, GUO Y, ZHU L X, LI L, HE Y Q, CHEN Z Y. DSP-Based Evolution From Conventional TDM-PON to TDM-OFDM-PON [J]. Journal of Lightwave Technology, 2013,31(5): 2735-2741.

[10] QIAN D, CVIJETIC N, HU J, WANG T. 40-Gbit/s MIMO-OFDM-PON Using Polarization Multiplexing and Direct-Detection [C]//Proceedings of the 2009 Opt. Fiber Commun. (OFC), Oct 9-11, 2009, Calgary, Canada. New York, NY, USA:ACM, 2009: 3.

[11] LIN B J, LI J H, HUI Y, JIANG S, ZHU L X, HE Y Q, CHEN Z Y. Experimental demonstration of optical MIMO transmission for SCFDM-PON based on polarization interleaving and direct detection [J]. Optics Communications, 2012,285(6): 5163-5168.

[12] LIN B J, LI J H, HUI Y, WAN Y S, LUO Y B, ZHANG P, HE Y Q, CHEN Z Y. 100-Gbit/s Multi-band OFDM-PON Based on Polarization Interleaving and Direct Detection [C]//Proceedings of the ACP 2012, Oct 6-7, 2012, Calgary, Canada. New York, NY, USA:ACM, 2012:5.

[13] QIAN D, CVIJETIC N, HU J, WANG T. 108 Gbit/s OFDMA-PON with polarization multiplexing and direct detection [J]. Light Technol., 2010,28(4): 484-493.

[14] TAKAHARA T, TANAKA T, NISHIHARA M, KAI Y, LI L, TAO Z N, RASMUSSEN J C. Discrete Multi-Tone for 100 Gbit/s Optical Access Networks [C]//Proceedings of the OFC 2014, Oct 6-7, 2014, Calgary, Canada. New York, NY, USA:ACM, 2014:1.

[15] LUO Y Q, ZHOU X P, EFFENBERGER F, YAN X J, PENG G K, QIAN Y B, MA Y R. Time- and Wavelength-Division Multiplexed Passive Optical Network (TWDM-PON) for Next-Generation PON Stage 2 (NG-PON2) [J]. Journal of Lightwave Technology, 2013,31(4): 484-493.

[16] LUO Y B, LIN B J, HUI Y, LI J H, HE Y Q, CHEN Z Y, LI Z B. Symmetric 100-Gbit/s TWDM-PON with DSB OFDM Modulation [C]//Proceedings of the OFC 2014, Oct 6-7, 2014, Calgary, Canada. New York, NY, USA:ACM, 2014:61.endprint

猜你喜欢

偏振无源色散
首个使用偏振的 超快光处理器面世
保偏光纤熔融焊接导致的交叉偏振耦合的简单评估
三支L上口镜头
无源核子料位计在大唐滨州电厂的应用
计算机仿真光注入VCSEL的偏振开关及双稳特性
浅谈波分系统的光纤色散及补偿
“光的折射”“光的色散”练习
中压开关柜带电指示器缺陷分析及技术改进
光无源接入网复用技术比较
探讨光的偏振现象