APP下载

EDA技术在电工技术教学中的应用

2014-10-08卜云

教育教学论坛 2014年9期
关键词:电工技术电路设计

卜云

摘要:在电工技术教学中引入先进的EDA技术是该课程教学改革的一个方向,它不仅能够使学生直接接触到先进的技术,还能够提高学生的学习兴趣和动手能力。文中设计了一个利用ADS软件设计基本放大电路的例子,为学生展示电路设计的基本过程,以及如何利用相关知识点设计相应的电路,使课堂教学脱离了纯理论讲解的方式,增加了教师与学生间的互动。

关键词:EDA;电工技术;电路设计

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)09-0029-02

一、引言

电工技术是一门非电专业,例如机械类、汽车类等学科中某些专业的基础或选修课程。但是,该门课程所包含的内容较多,跨度较大。上册主要有电路分析和电动机的基本原理,还包括电力电子技术;下册主要内容为模拟电子技术和数字电子技术。本课程开设的初衷是为这些非电专业的学生提供一个窗口,使其能够在短时间内对电子技术的基本原理有一个整体的把握,以具备对其专业的相关电子设备有一定的了解能力。因此,这种非专业性课程的定位,加之课程内容本身理论性较强,使学生不了解学习该课程的意义与实际的应用,导致学生学习兴趣不高,大多数以获得学分为目的。但是,随着现代科技的发展,电子技术及其相关的学科,几乎已经对各门学科产生了极大的影响,最明显的例子体现在现代汽车工业中。目前,汽车已经不再单纯是一个机械装置,它是综合了最新机械与电子技术发展水平的高科技产品。同时,随着电子和信息技术的飞速发展,市场上出现了各种各样的电子设计自动化(EDA:Electronics design automation)软件,改变了以往全部需要手工工作来设计电路的局面。目前,几乎所有的电子电路设计任务都是在EDA软件的协助下完成的,而且,是否具备熟练的EDA软件使用能力已经成为大多数公司招聘员工的先决条件。因此,在电工技术课程中引入EDA技术[1-5],不仅能够为学生提供更为丰富的教学内容,也是帮助学生更好就业的一个重要手段。

二、EDA技术在模拟电路教学中的应用举例

模拟电路通常是电工技术教学中的难点,一是电路结构复杂,学生难以理解;其次,学生不了解该部分内容在实际工作中的应用,导致学习兴趣不高。为此,可以适当将EDA技术穿插在这部分的教学中,从实际电路设计的过程中引出与课程关键知识点相关的内容,以达到提高学生学习兴趣的目的。以下用一个实际的例子来表明如何将EDA设计过程与电工课程中相关知识点进行结合。

例:使用ADS(Advanced design system)软件实现共射极放大电路的静态分析与直流偏置设计。

共射极基本放大电路是电工技术中模拟电路部分接触的第一个重要的知识点,课程要求学生熟练使用计算法与图解法来确定放大电路的静态工作点。学生对这一部分的掌握情况直接影响到其对后续知识点的掌握,因此,本例从电路设计的实际过程出发,引出相应的知识点。

在讲解例子之前,需要给学生明确的是在实际的有源电路设计中,通常情况下,晶体管静态工作点的选择与设计是第一步,也是至关重要的一步。实现不同功能的电路,可能在电路图上区别不大,重要的是其静态工作点的选择。例如,低噪声功率放大器需要无失真地放大微弱信号,因此它的静态工作点需要选择在输出曲线的中点,而高功率放大电路为了尽可能提高输出效率,通常静态工作点选择到靠近截止区,而混频器、倍频器等电路,主要为了使用其非线性性能,因此,它们的静态工作点通常要靠近饱和区。其次,需要强调的是电路设计是电路分析的逆过程,遵循的步骤是根据输入输出关系,确定静态工作点,再得到直流偏置电路,与课程中计算直流工作点的顺序正好相反,但是,它们所反映出的基本原理都是相同的。

确定静态工作点,就是根据电路所要实现的功能,确定基极电流IBB和集电极电流IC,集射电压UCE。因此,首先需要得到晶体管的输入输出曲线。在ADS中,输入输出关系是通过对晶体管做直流扫描得到的。实验步骤是先建立一个新的工程项目(Project)和一个新的设计(Design),然后选择晶体管直流工作点扫描模板(ADS中常用的功能都做成了模板,可以直接调用),并在其提供的元器件库中选择合适的元件,加入到模板中,如图1所示。

其次,需要设定晶体管的工作范围,就是IBB和VCE的范围,可以通过扫描参数设置得到,如图2所示。本例中,IBB的扫描范围是从20uA到100uA,扫描步长为10uA。VCE的扫描范围从0V到5V,扫描步长为0.1V。当扫描参数确定后,点击仿真按钮,就会产生图3的输入输出曲线。

图3所示的输入输出关系曲线与课本上的曲线几乎是一致的,它表明在不同的基极电流IBB作用下,集电极电流IC与集射电压VCE的关系。通过输入输出曲线,可以选择合适的静态工作点,以实现电路的功能。在本例中,为与教材保持一致,将静态工作点选择在输出曲线的中点,大致对应于图3中光标m1的位置,软件会自动显示出此处的参数,即IBB=60uA,VCE=3V,IC=6mA。当静态工作点确定后,可以据此设计直流偏置电路。由于本例是设计共射极基本放大电路,因此需要计算基极和集电极电阻的大小。在ADS中,偏置电阻的大小可以自动计算,但是需要手动输入相关的公式,如图4所示:

根据图4的计算公式,可以得到图5的计算结果。从图中可以看到,当选择Ibb=60uA时,对应的基射电压和基极电阻在一个范围内变动,因此只能选择一个近似的值VBE=0.8V,Rb=60K。用同样的方法,可以得到的集电极电阻Rc=340。当所有的参数都计算得到后,需要对该电路进行验证,并根据验证结果进行调整。验证电路及其参数如图6所示。

根据共射极放大电路的基本计算结果,可以设计出图6所示电路。验证该电路的方法是对其做直流仿真,并将仿真计算的结果直接显示在电路图中对应的元件和支路上。从图中可以看出,基极的电位为809mV,电流为69.9uA,而集电极电位VCE=2.74V,Ic=6.64mA。对比前面得到的静态工作点参数(IBB=60uA,VCE=3V,IC=6mA),可以发现它们之间存在一个小的偏差,这是因为在电路设计中,无论是在静态工作点还是元件参数的选择上,都存在近似的过程,因此,任何电路的设计,都是一个近似的设计,由此得到的实际电路都需要经过调试合格后才能够实际使用。

以上的例子为学生展示了一个电路设计的基本过程以及设计方法。当课程进一步深入后,可以对本例进行扩展,例如在分析放大电路动态特性时,可以加入不同幅度的输入信号,观察在不同静态工作点,放大电路的输入输出波形和非线性失真,有助于学生理解设计静态工作点的意义。

三、结语

通过在电工技术课堂上增加EDA设计的过程,可以使课程从纯理论教学转向理论与实际设计相结合的教学方式,不仅能够提高学生的学习兴趣,还能够培养他们的实际动手能力,并极大增加了教师和学生间的互动。同时,课本上的理论与公式不再需要死记硬背,它们已经融合到设计过程中,学生通过一两个简单的设计就可以熟练掌握,使学生能够轻松完成课程的学习和考试。

参考文献:

[1]刘廷文,唐庆玉.EDA课程设计——研究型教学的重要环节[J].试验技术与管理,2006,23(10):112-116.

[2]刘廷文,唐庆玉,段玉生.EDA技术是实现电工学研究型教学的良好手段[J].实验技术与管理,2006,23(8):65-68.

[3]高金定,邬书跃,孙彦彬,等.EDA技术创新型实验教学体系的构建与实践[J].试验技术与管理,2011,28(2):158-160.

[4]田建艳,夏路易.EDA支持下的电子技术教学实践[J].教育理论与实践,2005,25(6):54-55.

[5]徐彦凯,双凯,姜珊.EDA课程设计课题的开发与体会[J].实验室研究与探索,2011,30(2):114-116.

摘要:在电工技术教学中引入先进的EDA技术是该课程教学改革的一个方向,它不仅能够使学生直接接触到先进的技术,还能够提高学生的学习兴趣和动手能力。文中设计了一个利用ADS软件设计基本放大电路的例子,为学生展示电路设计的基本过程,以及如何利用相关知识点设计相应的电路,使课堂教学脱离了纯理论讲解的方式,增加了教师与学生间的互动。

关键词:EDA;电工技术;电路设计

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)09-0029-02

一、引言

电工技术是一门非电专业,例如机械类、汽车类等学科中某些专业的基础或选修课程。但是,该门课程所包含的内容较多,跨度较大。上册主要有电路分析和电动机的基本原理,还包括电力电子技术;下册主要内容为模拟电子技术和数字电子技术。本课程开设的初衷是为这些非电专业的学生提供一个窗口,使其能够在短时间内对电子技术的基本原理有一个整体的把握,以具备对其专业的相关电子设备有一定的了解能力。因此,这种非专业性课程的定位,加之课程内容本身理论性较强,使学生不了解学习该课程的意义与实际的应用,导致学生学习兴趣不高,大多数以获得学分为目的。但是,随着现代科技的发展,电子技术及其相关的学科,几乎已经对各门学科产生了极大的影响,最明显的例子体现在现代汽车工业中。目前,汽车已经不再单纯是一个机械装置,它是综合了最新机械与电子技术发展水平的高科技产品。同时,随着电子和信息技术的飞速发展,市场上出现了各种各样的电子设计自动化(EDA:Electronics design automation)软件,改变了以往全部需要手工工作来设计电路的局面。目前,几乎所有的电子电路设计任务都是在EDA软件的协助下完成的,而且,是否具备熟练的EDA软件使用能力已经成为大多数公司招聘员工的先决条件。因此,在电工技术课程中引入EDA技术[1-5],不仅能够为学生提供更为丰富的教学内容,也是帮助学生更好就业的一个重要手段。

二、EDA技术在模拟电路教学中的应用举例

模拟电路通常是电工技术教学中的难点,一是电路结构复杂,学生难以理解;其次,学生不了解该部分内容在实际工作中的应用,导致学习兴趣不高。为此,可以适当将EDA技术穿插在这部分的教学中,从实际电路设计的过程中引出与课程关键知识点相关的内容,以达到提高学生学习兴趣的目的。以下用一个实际的例子来表明如何将EDA设计过程与电工课程中相关知识点进行结合。

例:使用ADS(Advanced design system)软件实现共射极放大电路的静态分析与直流偏置设计。

共射极基本放大电路是电工技术中模拟电路部分接触的第一个重要的知识点,课程要求学生熟练使用计算法与图解法来确定放大电路的静态工作点。学生对这一部分的掌握情况直接影响到其对后续知识点的掌握,因此,本例从电路设计的实际过程出发,引出相应的知识点。

在讲解例子之前,需要给学生明确的是在实际的有源电路设计中,通常情况下,晶体管静态工作点的选择与设计是第一步,也是至关重要的一步。实现不同功能的电路,可能在电路图上区别不大,重要的是其静态工作点的选择。例如,低噪声功率放大器需要无失真地放大微弱信号,因此它的静态工作点需要选择在输出曲线的中点,而高功率放大电路为了尽可能提高输出效率,通常静态工作点选择到靠近截止区,而混频器、倍频器等电路,主要为了使用其非线性性能,因此,它们的静态工作点通常要靠近饱和区。其次,需要强调的是电路设计是电路分析的逆过程,遵循的步骤是根据输入输出关系,确定静态工作点,再得到直流偏置电路,与课程中计算直流工作点的顺序正好相反,但是,它们所反映出的基本原理都是相同的。

确定静态工作点,就是根据电路所要实现的功能,确定基极电流IBB和集电极电流IC,集射电压UCE。因此,首先需要得到晶体管的输入输出曲线。在ADS中,输入输出关系是通过对晶体管做直流扫描得到的。实验步骤是先建立一个新的工程项目(Project)和一个新的设计(Design),然后选择晶体管直流工作点扫描模板(ADS中常用的功能都做成了模板,可以直接调用),并在其提供的元器件库中选择合适的元件,加入到模板中,如图1所示。

其次,需要设定晶体管的工作范围,就是IBB和VCE的范围,可以通过扫描参数设置得到,如图2所示。本例中,IBB的扫描范围是从20uA到100uA,扫描步长为10uA。VCE的扫描范围从0V到5V,扫描步长为0.1V。当扫描参数确定后,点击仿真按钮,就会产生图3的输入输出曲线。

图3所示的输入输出关系曲线与课本上的曲线几乎是一致的,它表明在不同的基极电流IBB作用下,集电极电流IC与集射电压VCE的关系。通过输入输出曲线,可以选择合适的静态工作点,以实现电路的功能。在本例中,为与教材保持一致,将静态工作点选择在输出曲线的中点,大致对应于图3中光标m1的位置,软件会自动显示出此处的参数,即IBB=60uA,VCE=3V,IC=6mA。当静态工作点确定后,可以据此设计直流偏置电路。由于本例是设计共射极基本放大电路,因此需要计算基极和集电极电阻的大小。在ADS中,偏置电阻的大小可以自动计算,但是需要手动输入相关的公式,如图4所示:

根据图4的计算公式,可以得到图5的计算结果。从图中可以看到,当选择Ibb=60uA时,对应的基射电压和基极电阻在一个范围内变动,因此只能选择一个近似的值VBE=0.8V,Rb=60K。用同样的方法,可以得到的集电极电阻Rc=340。当所有的参数都计算得到后,需要对该电路进行验证,并根据验证结果进行调整。验证电路及其参数如图6所示。

根据共射极放大电路的基本计算结果,可以设计出图6所示电路。验证该电路的方法是对其做直流仿真,并将仿真计算的结果直接显示在电路图中对应的元件和支路上。从图中可以看出,基极的电位为809mV,电流为69.9uA,而集电极电位VCE=2.74V,Ic=6.64mA。对比前面得到的静态工作点参数(IBB=60uA,VCE=3V,IC=6mA),可以发现它们之间存在一个小的偏差,这是因为在电路设计中,无论是在静态工作点还是元件参数的选择上,都存在近似的过程,因此,任何电路的设计,都是一个近似的设计,由此得到的实际电路都需要经过调试合格后才能够实际使用。

以上的例子为学生展示了一个电路设计的基本过程以及设计方法。当课程进一步深入后,可以对本例进行扩展,例如在分析放大电路动态特性时,可以加入不同幅度的输入信号,观察在不同静态工作点,放大电路的输入输出波形和非线性失真,有助于学生理解设计静态工作点的意义。

三、结语

通过在电工技术课堂上增加EDA设计的过程,可以使课程从纯理论教学转向理论与实际设计相结合的教学方式,不仅能够提高学生的学习兴趣,还能够培养他们的实际动手能力,并极大增加了教师和学生间的互动。同时,课本上的理论与公式不再需要死记硬背,它们已经融合到设计过程中,学生通过一两个简单的设计就可以熟练掌握,使学生能够轻松完成课程的学习和考试。

参考文献:

[1]刘廷文,唐庆玉.EDA课程设计——研究型教学的重要环节[J].试验技术与管理,2006,23(10):112-116.

[2]刘廷文,唐庆玉,段玉生.EDA技术是实现电工学研究型教学的良好手段[J].实验技术与管理,2006,23(8):65-68.

[3]高金定,邬书跃,孙彦彬,等.EDA技术创新型实验教学体系的构建与实践[J].试验技术与管理,2011,28(2):158-160.

[4]田建艳,夏路易.EDA支持下的电子技术教学实践[J].教育理论与实践,2005,25(6):54-55.

[5]徐彦凯,双凯,姜珊.EDA课程设计课题的开发与体会[J].实验室研究与探索,2011,30(2):114-116.

摘要:在电工技术教学中引入先进的EDA技术是该课程教学改革的一个方向,它不仅能够使学生直接接触到先进的技术,还能够提高学生的学习兴趣和动手能力。文中设计了一个利用ADS软件设计基本放大电路的例子,为学生展示电路设计的基本过程,以及如何利用相关知识点设计相应的电路,使课堂教学脱离了纯理论讲解的方式,增加了教师与学生间的互动。

关键词:EDA;电工技术;电路设计

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)09-0029-02

一、引言

电工技术是一门非电专业,例如机械类、汽车类等学科中某些专业的基础或选修课程。但是,该门课程所包含的内容较多,跨度较大。上册主要有电路分析和电动机的基本原理,还包括电力电子技术;下册主要内容为模拟电子技术和数字电子技术。本课程开设的初衷是为这些非电专业的学生提供一个窗口,使其能够在短时间内对电子技术的基本原理有一个整体的把握,以具备对其专业的相关电子设备有一定的了解能力。因此,这种非专业性课程的定位,加之课程内容本身理论性较强,使学生不了解学习该课程的意义与实际的应用,导致学生学习兴趣不高,大多数以获得学分为目的。但是,随着现代科技的发展,电子技术及其相关的学科,几乎已经对各门学科产生了极大的影响,最明显的例子体现在现代汽车工业中。目前,汽车已经不再单纯是一个机械装置,它是综合了最新机械与电子技术发展水平的高科技产品。同时,随着电子和信息技术的飞速发展,市场上出现了各种各样的电子设计自动化(EDA:Electronics design automation)软件,改变了以往全部需要手工工作来设计电路的局面。目前,几乎所有的电子电路设计任务都是在EDA软件的协助下完成的,而且,是否具备熟练的EDA软件使用能力已经成为大多数公司招聘员工的先决条件。因此,在电工技术课程中引入EDA技术[1-5],不仅能够为学生提供更为丰富的教学内容,也是帮助学生更好就业的一个重要手段。

二、EDA技术在模拟电路教学中的应用举例

模拟电路通常是电工技术教学中的难点,一是电路结构复杂,学生难以理解;其次,学生不了解该部分内容在实际工作中的应用,导致学习兴趣不高。为此,可以适当将EDA技术穿插在这部分的教学中,从实际电路设计的过程中引出与课程关键知识点相关的内容,以达到提高学生学习兴趣的目的。以下用一个实际的例子来表明如何将EDA设计过程与电工课程中相关知识点进行结合。

例:使用ADS(Advanced design system)软件实现共射极放大电路的静态分析与直流偏置设计。

共射极基本放大电路是电工技术中模拟电路部分接触的第一个重要的知识点,课程要求学生熟练使用计算法与图解法来确定放大电路的静态工作点。学生对这一部分的掌握情况直接影响到其对后续知识点的掌握,因此,本例从电路设计的实际过程出发,引出相应的知识点。

在讲解例子之前,需要给学生明确的是在实际的有源电路设计中,通常情况下,晶体管静态工作点的选择与设计是第一步,也是至关重要的一步。实现不同功能的电路,可能在电路图上区别不大,重要的是其静态工作点的选择。例如,低噪声功率放大器需要无失真地放大微弱信号,因此它的静态工作点需要选择在输出曲线的中点,而高功率放大电路为了尽可能提高输出效率,通常静态工作点选择到靠近截止区,而混频器、倍频器等电路,主要为了使用其非线性性能,因此,它们的静态工作点通常要靠近饱和区。其次,需要强调的是电路设计是电路分析的逆过程,遵循的步骤是根据输入输出关系,确定静态工作点,再得到直流偏置电路,与课程中计算直流工作点的顺序正好相反,但是,它们所反映出的基本原理都是相同的。

确定静态工作点,就是根据电路所要实现的功能,确定基极电流IBB和集电极电流IC,集射电压UCE。因此,首先需要得到晶体管的输入输出曲线。在ADS中,输入输出关系是通过对晶体管做直流扫描得到的。实验步骤是先建立一个新的工程项目(Project)和一个新的设计(Design),然后选择晶体管直流工作点扫描模板(ADS中常用的功能都做成了模板,可以直接调用),并在其提供的元器件库中选择合适的元件,加入到模板中,如图1所示。

其次,需要设定晶体管的工作范围,就是IBB和VCE的范围,可以通过扫描参数设置得到,如图2所示。本例中,IBB的扫描范围是从20uA到100uA,扫描步长为10uA。VCE的扫描范围从0V到5V,扫描步长为0.1V。当扫描参数确定后,点击仿真按钮,就会产生图3的输入输出曲线。

图3所示的输入输出关系曲线与课本上的曲线几乎是一致的,它表明在不同的基极电流IBB作用下,集电极电流IC与集射电压VCE的关系。通过输入输出曲线,可以选择合适的静态工作点,以实现电路的功能。在本例中,为与教材保持一致,将静态工作点选择在输出曲线的中点,大致对应于图3中光标m1的位置,软件会自动显示出此处的参数,即IBB=60uA,VCE=3V,IC=6mA。当静态工作点确定后,可以据此设计直流偏置电路。由于本例是设计共射极基本放大电路,因此需要计算基极和集电极电阻的大小。在ADS中,偏置电阻的大小可以自动计算,但是需要手动输入相关的公式,如图4所示:

根据图4的计算公式,可以得到图5的计算结果。从图中可以看到,当选择Ibb=60uA时,对应的基射电压和基极电阻在一个范围内变动,因此只能选择一个近似的值VBE=0.8V,Rb=60K。用同样的方法,可以得到的集电极电阻Rc=340。当所有的参数都计算得到后,需要对该电路进行验证,并根据验证结果进行调整。验证电路及其参数如图6所示。

根据共射极放大电路的基本计算结果,可以设计出图6所示电路。验证该电路的方法是对其做直流仿真,并将仿真计算的结果直接显示在电路图中对应的元件和支路上。从图中可以看出,基极的电位为809mV,电流为69.9uA,而集电极电位VCE=2.74V,Ic=6.64mA。对比前面得到的静态工作点参数(IBB=60uA,VCE=3V,IC=6mA),可以发现它们之间存在一个小的偏差,这是因为在电路设计中,无论是在静态工作点还是元件参数的选择上,都存在近似的过程,因此,任何电路的设计,都是一个近似的设计,由此得到的实际电路都需要经过调试合格后才能够实际使用。

以上的例子为学生展示了一个电路设计的基本过程以及设计方法。当课程进一步深入后,可以对本例进行扩展,例如在分析放大电路动态特性时,可以加入不同幅度的输入信号,观察在不同静态工作点,放大电路的输入输出波形和非线性失真,有助于学生理解设计静态工作点的意义。

三、结语

通过在电工技术课堂上增加EDA设计的过程,可以使课程从纯理论教学转向理论与实际设计相结合的教学方式,不仅能够提高学生的学习兴趣,还能够培养他们的实际动手能力,并极大增加了教师和学生间的互动。同时,课本上的理论与公式不再需要死记硬背,它们已经融合到设计过程中,学生通过一两个简单的设计就可以熟练掌握,使学生能够轻松完成课程的学习和考试。

参考文献:

[1]刘廷文,唐庆玉.EDA课程设计——研究型教学的重要环节[J].试验技术与管理,2006,23(10):112-116.

[2]刘廷文,唐庆玉,段玉生.EDA技术是实现电工学研究型教学的良好手段[J].实验技术与管理,2006,23(8):65-68.

[3]高金定,邬书跃,孙彦彬,等.EDA技术创新型实验教学体系的构建与实践[J].试验技术与管理,2011,28(2):158-160.

[4]田建艳,夏路易.EDA支持下的电子技术教学实践[J].教育理论与实践,2005,25(6):54-55.

[5]徐彦凯,双凯,姜珊.EDA课程设计课题的开发与体会[J].实验室研究与探索,2011,30(2):114-116.

猜你喜欢

电工技术电路设计
Altium Designer在电路设计中的应用
负反馈放大电路设计
基于任务驱动的 《电工基础》 课程教学设计
“翻转课堂”在《电工技术》仿真教学的应用研究
关于电工技术课程教学的思考
开漏输出比较器的峰值检测电路设计
基于UC3843的60W升压电路设计
基于UC3842应用电路设计
基于TPS2491的热插拔保护电路设计