断裂在纯净砂岩中的变形机制及断裂带内部结构
2014-09-25付晓飞肖建华孟令东
付晓飞,肖建华,孟令东
1.东北石油大学CNPC断裂控藏实验室,黑龙江 大庆 163318
2.非常规油气成藏与开发省部共建国家重点实验室培育基地,黑龙江 大庆 163318
0 引言
断层封闭性研究的基础是断裂带内部结构研究[1]。断裂在不同岩性地层中的变形机制不同,导致不同类型断裂带结构的形成[2]。影响断裂变形机制的因素既有内因(岩性、矿物成分、成岩阶段、孔隙度和渗透率),也有外因(温度、围压和变形深度)[2-3]。一般是按着泥质含量(体积分数Vsh)高低区分岩性:当Vsh<15%时,称为纯净砂岩;当15%≤Vsh<50%时,称为不纯净的砂岩,相当于沉积岩石学中的杂砂岩[4];当Vsh≥50%时,为泥岩。矿物成分主要考虑石英、长石和岩屑3种,目前对石英砂岩中断裂变形机制研究较多[5-6],而对长石砂岩和岩屑砂岩缺乏系统研究,因此本次将重点讨论纯净砂岩的断裂变形机制。成岩阶段一般粗略分为3个阶段:未固结-半固结(相当于我国石油行业标准[7]中的同生成岩阶段-早成岩阶段B亚期的早期)、固结成岩阶段(相当于早成岩阶段B亚期的晚期-中成岩阶段A亚期)和超固结成岩阶段(中成岩阶段A亚期-晚成岩阶段)。Fisher等[8]依据孔隙度和标准化围压厘定了砂岩脆-塑性转化的地质条件:标准化围压小于0.25MPa、孔隙度大于15%时,砂岩发生明显的脆性变形,断裂渗透率不改变或略有减小;标准化围压大于0.25MPa时,砂岩处于脆-塑性转化阶段,断裂渗透率明显降低;标准化围压小于0.25MPa、孔隙度小于15%时,砂岩发生明显的脆性变形,断裂渗透率增加。从这个结果看,孔隙度为15%可能是高孔隙度砂岩和低孔隙度砂岩之间的分界线,二者断裂变形机制可能明显不同。温度影响石英压溶胶结,一般来说地温超过90℃时,石英压溶胶结速率快速增加[9-10]。在不同成岩阶段发生断裂变形,由于母岩性质及温压条件不同,变形机制也明显不同。埋藏成岩后抬升阶段发生的断裂变形又有其特殊性[6],由于应力松弛和压力释放,节理大量发育,展示了明显的脆性变形特征。尽管断裂带内部结构普遍具有断层核和破碎带二分结构[1,11],但由于上述因素的影响,断层核中断层岩性质和破碎带中破裂方式存在明显的差异,也就形成渗透性不同的多种类型的断裂带。笔者以纯净砂岩为对象,考虑影响断裂变形的多种因素,系统研究断裂在砂岩中的变形机制和断裂带内部结构,建立纯净砂岩垂向断裂变形序列,为剖析断裂通道和遮挡作用奠定理论基础。
1 未固结-半固结成岩阶段砂岩微构造特征、变形机制及断裂带结构
1.1 微构造特征及变形机制
对于纯净砂岩(泥质体积分数小于15%)而言,在未固结-半固结成岩阶段,发生颗粒边界摩擦滑动(frictional grain boundary sliding),导致颗粒旋转和滚动,即为颗粒流(granular/particulate flow),形成解聚带(disaggregation zone)(图1),具有6个典型特征:a.外观上比母岩颜色更浅,整体显示白色[3](图2a)。b.颗粒尺寸没有明显减小,由于颗粒旋转和滚动,一些颗粒具有明显定向排列[3,12](图2b,c)。c.断距几厘米,长度小于几十米[2,13],随着最大断距(Dmax)增加,长度(L)逐渐增大,Dmax/L 为0.01~0.10,幂指数为0.83[2],与发育成熟的断层基本一致[13-17](图3)。d.厚度随着母岩颗粒尺寸而变化,一般是母岩颗粒尺寸的10倍[12]。e.孔隙度和渗透率同母岩相比无明显的变化,有时泥质体积分数高于5%时,渗透率可降低1~2个数量级[3];解聚带按其力学特征可分为膨胀带(dilational band)和压缩带(compressive band),膨胀带形成与异常高孔隙流体压力有关,表现为体积增大的特征,孔隙度和渗透率明显增大,压缩带的孔隙度和渗透率同母岩相比明显降低;早期形成的解聚带深埋后,当地温超过90℃时,可能发生压溶胶结作用,渗透率降低3~4个数量级。f.解聚带对砂岩储层的渗透率影响较小[6],有些解聚带成为流体垂向运移的通道[18]。
1.2 断裂带内部结构及渗透性
在未固结-半固结成岩阶段砂岩中形成断裂带仍具有断层核和破碎带二分结构(图4)。Bense等[19]对Geleen断层断裂带内部结构进行了系统描述:断层核通常包括颗粒重排的解聚带、“砂和泥”混合带和滑动面;破碎带发育多方位的解聚带,解聚带密度随着与断层核距离增大逐渐减小。由于解聚带发育,使破碎带渗透率明显高于断层核,而断层核渗透率又高于母岩。这种断裂带侧向不封闭,垂向又是流体流动的通道[18]。
2 固结成岩阶段高孔隙性砂岩微构造特征、变形机制及断裂带结构
2.1 微构造特征及变形机制
在固结成岩阶段,发生破裂作用[20],破碎的岩石碎屑在剪切作用下发生摩擦滑动和旋转[21],即为碎裂流(cataclastic flow)(图1),形成碎裂变形带(cataclastic bands)[3,5,22-29],具有11个典型的特征:a.碎裂带发育在以下所列的各种岩性中:高孔隙(孔隙度 大 于 15%)砂 岩[3,23,25-33]、未 固 结 或 半 固 结 砂岩[34-39]、黏土岩[37]和未熔结的凝灰岩[40]。b.形成于多种构造环境中并以不同方式出现,如垂直抬升形成的裂谷盆地[3]、强制褶皱[32]、泥岩刺穿生长背景[38]、重力坍塌构造[39]、盐构造生长和坍塌背景[41]以及冰川构造[42]。发育的模式主要有两类:一是以多种组合模式发育在背斜中;二是广泛发育在断裂破碎带中。c.外观上为“正”风化地形,呈肋状凸出,颜色比母岩浅,含泥较高时颜色较深[5-6]。d.矿物成分与母岩相似,但微观上表现为颗粒尺寸减小,分选变差(图5);母岩如果为砂岩,碎裂带颗粒尺寸涵盖砂-粉砂-泥3个级别[5,30,41]。e.断距一般几厘米,长度不超过几百米,最大位移与长度之间在双对数坐标下正相关(图3),但偏离正常断层的趋势线(Dmax=cLα,c为常数),α 接近于 0.54[13],Dmax/L 为 0.001[12];造成这种偏离的主要原因为碎裂带应变硬化阻止位移增大,但有利于端部的扩展。f.Fossen和 Bale[43]研 究 表 明,单 个 变 形 带 (deformation band)(碎裂带)厚度为几毫米,沿着走向和倾向厚度表现为不均一性,簇状变形带(deformation band clusters)厚度为几厘米至几分米。当孔隙度大于15%时,随着孔隙度增加,变形带厚度逐渐增大。但无论孔隙度多大,随着位移增加,变形带厚度明显增大。g.碎裂带平面和剖面组合模式多样,如截断、平行、交叉、共扼、叠覆、硬连接和网状等。h.碎裂带在多个构造部位呈“簇状”发育:一是断裂破碎带,碎裂带密度随着与断层核距离增大逐渐减小[6,24,44];二是断裂端部的过程带(process zone)[6,41];三是调节带[45-46];四是背斜顶部[46];五是交叉断层组成的三角地带[45];六是2条平行断层之间的区域[45]。i.孔隙度和渗透率同母岩相比,明显降低,母岩孔隙度越大,形成的碎裂带孔隙度越低[41],渗透率一般降低2~3个数量级,最大可达6个数量级[2,6]。j.对单相流动而言,变形带数量(变形条带宽度)和渗透率减小对流体流动有着重要的影响[47],复杂的变形条带减少油井的产能。但Fossen和Bale[43]数值模拟表明:当碎裂带渗透率比母岩低3个数量级时,即使密度高达100条/m时,对流体流动效率也没有明显的影响;但渗透率比母岩低4~6个数量级时,流体流动效率明显降低。对于两相流动而言,变形带门限压力决定断层封闭油柱高度的大小,计算表明,变形带封闭油柱高度不超过20m[48],Gibson[49]认为碎裂带封闭的烃柱高度最大为75m。k.当埋深超过3km,即地温超过90℃时,碎裂带发生明显的石英压溶胶结[9],形成压溶变形带(solution band)[13,49],渗透率比碎裂带低1~2 个 数 量级[10,50]。
图1 石英砂岩断裂变形机制及微构造特征(据文献[3,8]修编)Fig.1 Fracture deformation mechanisms and micro-structural characteristics of quartz sandston(based on references[3,8])
图2 解聚带的宏观和微观特征(据文献[3,12]修编)Fig.2 Macro and microscopic features of disaggregation band(based on references[3,12])
图3 不同类型断层最大位移与长度的关系[15]Fig.3 Relations between different types of fault displacement and length[15]
图4 发育在Roer裂谷系未固结沉积物中的Geleen断层断裂带内部结构(据文献[1,19]修编)Fig.4 Internal structure of Geleen Fault fault zone of the unconsolidated sediments in Roer rift system(based on references[1,19])
2.2 断裂带内部结构及渗透性
固结成岩的纯净砂岩中的断裂源于碎裂带的形成和发展[5-6,51],开始形成单个碎裂带,其强度高于围压。应变硬化[30]作用会引起局部的应变,在原来变形带旁边产生新的变形带,形成簇状变形带,由于流体参与或断层泥作用发生应变软化,进一步变形会形成滑动面并发育成断层(图6)。部分簇状变形带成为断裂破碎带的一部分,伴随着断裂活动,在破碎带中会新生一部分碎裂带。因此,断层核主要由碎裂带和滑动面组成,破碎带发育大量的碎裂带(图6),随着距离断层核距离增加,碎裂带密度逐渐减小[6,24,44,52]。Antonellini和 Aydin[46]系统测试了断裂带渗透率后认为:断层核中垂直碎裂带方向渗透率比围岩降低2~3个数量级,碎裂带的密度越大,渗透率降低的幅度越大,滑动面渗透率比围岩降低3~5个数量级(图7);平行碎裂带方向,断层核中碎裂带渗透率变化不大,但滑动面渗透率比母岩高1~2个数量级(图7)。破碎带中垂直碎裂带方向渗透率降低不到一个数量级,随着碎裂带密度增大,渗透率降低的幅度越大(图7)。这种结构的断裂带侧向有一定的封闭能力,封闭油柱高度不超过20 m[48],垂向为流体选择性运移的通道。
图5 碎裂带发育特征及组合关系(据文献[2,5]修编)Fig.5 Development characteristics and the relations of composition of cataclastic band(based on references[2,5])
3 固结成岩阶段低孔隙性砂岩微构造特征、变形机制及断裂带结构
在固结成岩阶段,砂岩孔隙度较低(一般小于15%[8]),同碳酸盐岩、火山岩和变质岩非孔隙性岩石变形类似,主要发生破裂作用(图1),而不是孔隙空间坍塌作用,形成滑动面、节理和矿物充填裂缝[2,6]。随着大量裂缝的形成,沿着裂缝发生摩擦滑动并伴随颗粒的旋转,产生碎裂流。断裂带内破裂符合里德尔剪切,早期阶段形成断层角砾岩(fault breccia)[2,8,53],大量裂缝形成后发生碎裂流作用,形成碎裂岩和断层泥。按变形深度,形成3种类型断裂带:一是埋藏小于3km,断层核主要发育无内聚力的断层角砾岩和断层泥(图8),破碎带发育大量的裂缝,这种结构的断层核侧向封闭性取决于断层泥的发育程度(图8);二是埋藏大于3km,断层核普遍发育有内聚力的断层角砾岩、碎裂岩和断层泥(图1),破碎带发育多种成因的裂缝,断层核侧向封闭,破碎带为流体垂向运移的通道;三是埋藏大于3km,断裂变形过程中有高压流体参与,形成无内聚力断层角砾岩,破碎带以发育张缝为主,断层核和破碎带均为流体垂向运移的通道(图9)。
图6 纯净砂岩断裂带结构及形成演化过程(据文献[2,51]修编)Fig.6 Fault zone structure and formation process of pure sandstone(based on references[2,51])
图7 纯净砂岩断裂带物性结构特征[46]Fig.7 Characteristics of structure of fault zone in pure sandstone[46]
① 毫达西(mD)为非法定计量单位,1mD=0.987×10-3μm2,下同。
4 固结成岩的砂岩抬升过程断裂变形机制及断裂带结构
固结成岩的砂岩在抬升过程中,由于卸载作用和冷却作用,主要发生脆性变形,形成区域裂缝。如果发生断裂变形,形成无内聚力的断层角砾岩[2],破碎带发育大量裂缝,一部分为区域裂缝,另一部分为断裂活动派生应力场产生的诱导裂缝,这种断层为油气垂向运移的通道。秦皇岛柳江盆地在鸡冠子山出露的长龙山组石英砂岩中发育的断层大多数为抬升期形成的正断层(图10),断裂带以破裂为主,形成裂缝发育的破碎带,局部可见初角砾岩,具有很高的渗透能力。
图8 巴西东南部低孔隙砂岩中伸展断层断裂带结构[54]Fig.8 Fault zone structure of extensional fault in low porosity sandstone of Southeast Brazil[54]
图9 埋深超过5km的石英碎屑岩由于高压流体参与形成的无内聚力断层角砾岩型断裂带[17]Fig.9 Quartz clastic rocks in the depth of more than 5km forms non-cohesive fault breccia fault zone due to the existence of high-pressure fluid[17]
图10 秦皇岛柳江盆地长龙山组石英砂岩中断裂带结构Fig.10 Fault zone structure of Changlongshan Group of quartz sandstone in Liujiang basin
5 变形叠加、断裂带结构的复杂性及油气选择性充注
纯净砂岩在不同成岩阶段发生变形,形成变形带或裂缝叠加组合,目前发现多种类型:一是在未固结-半固结阶段变形形成的解聚带与在固结成岩阶段形成的碎裂带组合[6];二是在固结成岩阶段形成的碎裂带与压溶胶结型碎裂带组合[3](图1);三是在固结成岩阶段高孔隙阶段形成的碎裂带与低孔隙阶段形成的裂缝或抬升阶段形成的裂缝组合[55]。
从变形过程及形成的微构造类型看(图11):在未固结-半固结成岩阶段发生解聚作用,形成解聚带;在固结成岩且孔隙度大于15%阶段发生压实和碎裂作用,形成碎裂带,当温度超过90℃ 时,石英压溶胶结形成胶结型碎裂带;当孔隙度低于15%后,断裂变形以破裂为主,形成以剪切缝和压溶缝为主的变形构造;孔隙度低于15%的砂岩在抬升过程发生变形,形成以张裂缝为主的变形构造。同一砂岩层在不同成岩阶段发生变形,变形叠加形成复杂的断裂带。对于一条晚期形成的断层而言(图11),不同深度变形机制及微构造类型不同导致油气选择性充注。碎裂带和压溶胶结碎裂带渗透率比母岩低1~6个数量级[6],阻止油气向高孔隙度砂岩中充注。而解聚带和母岩渗透率相当,不会对油气充注产生影响,反而解聚带会成为油气运移的通道,因此在地表可以见到含油气的解聚带[18]。砂岩孔隙度越大,越容易发生孔隙坍塌并导致碎裂作用产生碎裂带,因此高孔隙性砂岩中孔隙度较低的储集层由于碎裂带不发育常常含油气性很好,而低孔隙性砂岩由于裂缝产生,有利于油气优先充注。
6 结论
1)泥质含量和成岩阶段是控制断裂变形机制和微构造类型的主因。纯净的石英砂岩在未固结-半固结成岩阶段发生断裂,变形机制为颗粒流,形成的微构造为解聚带;固结成岩阶段高孔隙砂岩(大于15%)发生断裂,变形机制为碎裂流,形成的微构造为碎裂带;固结成岩阶段低孔隙砂岩(小于15%)发生断裂,开始由于破裂作用,形成断层角砾岩,伴随着碎裂流发生,形成碎裂岩。固结成岩的砂岩在抬升过程发生断裂,变形机制为破裂作用,形成无内聚力的角砾岩,为高渗透断裂带。
2)石英砂岩断裂变形后,温度对其封闭性影响很大,一般来说温度超过90℃时,埋深大于3km,石英压溶胶结的速度明显增大,早期形成的解聚带和碎裂带均会因石英压溶胶结而增强封闭能力。
3)在不同成岩阶段发生变形,形成多类型变形构造的叠加,包括:在未固结-半固结阶段变形形成的解聚带与在固结成岩阶段形成的碎裂带组合;在固结成岩阶段形成的碎裂带与压溶胶结型碎裂带组合;在固结成岩阶段高孔隙阶段形成的碎裂带与低孔隙阶段形成的裂缝或抬升阶段形成的裂缝组合。
4)对于一条晚期形成的断层而言,由于不同深度变形机制及微构造类型不同,导致油气选择性充注,碎裂带和压溶胶结碎裂带阻止油气向高孔隙度砂岩中充注,解聚带会成为油气运移的通道,裂缝有利于油气优先充注。因此,高孔隙性砂岩中孔隙度较低的储集层由于碎裂带不发育,常常含油气性最好,而低孔隙性砂岩由于裂缝产生含油气性较好。
图11 在纯净砂岩中断裂变形形成的微构造类型及对油气充注影响模式图Fig.11 Micro-structure type formed with fault deformation and its effect on oil and gas filled model in pure sandstone
(References):
[1]Caine J.Fault Zone Architecture and Permeability Structure[J].Geology,1996,24(11):1025-1028.
[2]Fossen H.Structural Geology[M].New York:Cambridge University Press,2010:119-185.
[3]Fisher Q J,Knipe R J.The Permeability of Faults Within Siliciclastic Petroleum Reservoir of the North Sea and Norwegian Continental Shelf[J].Marine and Petroleum Geology,2001,18(10):1063-1081.
[4]朱筱敏,赵澄林.沉积岩石学[M].北京:石油工业出版社,2001.Zhu Xiaomin,Zhao Chenglin.Sedimentary Petrology[M].Beijing:Petroleum Industry Press,2001.
[5]Aydin A,Johnson A M.Development of Faults as Zones of Deformation Bands and as Slip Surfaces in Sandstones[J].Pure and Applied Geophysics,1978,116(4):931-942.
[6]Fossen H,Schultz Z K,Shipton,et al.Deformation Bands in Sandstone:A Review[J].Journal of the Geological Society,2007,164(4):755-769.
[7]应凤祥.碎屑岩成岩阶段划分规范[M].北京:石油工业出版社,1993.Ying Fengxiang.Standard for Dividing the Diagenesis Phases of Clastic Rocks[M].Beijing:Petroleum Industry Press,1993.
[8]Fisher Q J,Casey M,Harris S D,et al.Fluild flow Properties of Faults in Sandstone:The Importance of Temperature History[J].Geology,2003,31:965-968.
[9]Walderhaug O.Kinetic Modeling of Quartz Cementation and Porosity Loss in Deeply Buried Sandstone Reservoirs[J].AAPG,1996,80(5):731-745.
[10]Fisher Q J,Knipe R J.Fault Sealing Processes in Siliciclastic Sediments[C]//Knipe R J,Jones G,Fisher Q J.et al.Faulting,Fault Sealing,and Fluid Flow in Hydrocarbon Reservoirs.London:Geological Society Special Publication,1998:117-134.
[11]Wibberley C A J,Yielding G,Toro G D.Recent Advances in the Understanding of Fault Zone Internal Structure:A Review[C]//Wibberley C A J,Kurz W,Imber J,et al.The Internal Structure of Fault Zones,Implications for Mechanical and Fluid-Flow Properties.London:The Geological Society,2008:5-33.
[12]Exner U,Grasemann B.Deformation Bands in Gravels:Displacement Gradients and Heterogeneous Strain[J].Journal of Structural Geology,2010,167(5):905-913.
[13]Fossen H,Hesthammer J.Geometric Analysis and Scaling Relations of Deformation Bands in Porous Sandstone[J].Journal of Structural Geology,1997,19(12):1479-1493.
[14]Wibberley C A J.Mechanics of High Displacement Gradient Faulting Prior to Lithification[J].Journal of Structural Geology,1999,21(3):251-257.
[15]Fossen H,Rykkelid E.Layer Rotation Around Vertical Fault Overlap Zones:Observations from Seismic Data,Field Example,and Physical Experiments[J].Marine and Petroleum Geology,2002,19(2):181-192.
[16]Krantz.Multiple Fault Sets and Three-Dimensional Strain:Theory and Application[J].Journal of Structural Geology,1988,10(3):225-237.
[17]Lindsay N G,Murphy F C,Walsh J,et al.Outcrop Studies of Shale Smear on Fault Surface[J].International Association of Sedimentologists Special Publication,1993,15:113-123.
[18]Sample J C,Woods S,Bender E,et al.Relationship Between Deformation Bands and Petroleum Migration in an Exhumed Reservoir Rock,Los Angeles Basin,California,USA[J].Geofluids,2006,6(2):105-112.
[19]Bense V F,Van den Berg E H,Van Balen R T.Deformation Mechanisms and Hydraulic Properties of Fault Zones in Unconsolidated Sediments,the Roer Valley Rift System,the Netherlands[J].Hydrogeology Journal,2003,11(3):319-332.
[20]Blenkinsop T G.Deformation Microstructures and Mechanisms in Minerals and Rocks[M].Kluwer:Kluwer Academic Publisher,2000:1-80.
[21]Fulljames J R,Zijerveld L J J,Franssen R C M W.Fault Seal Processes:Systematic Analysis of Fault Seals over Geological and Production Time Scales[C]//Moeller-Pedersen,Koester A G.Hydrocarbon Seals.Netherlands:NPF Special Publication,1997:51-59.
[22]Du Bernard X,Eichhubl P,Aydin A.Dilation Bands:A New Form of Localized Failure in Granular Media[J].Geophysical Research Letters,2002,29(24):2176-2179.
[23]Du Bernard X,Labaume P,Darcel C,et al.Cataclastic Slip Band Distribution in Normal Fault Damage Zones,Nubian Sandstones,Suez Rift[J].Journal of Geophysical Research,2002,107(B7):2141.
[24]Aydin A,Johnson A M.Analysis of Faulting in Porous Sandstones[J].Journal of Structural Geology,1983,5(1):19-31.
[25]Beach A,Welborn A I,Brockbank P,et al.Reservoir Damage Around Faults:Outcrop Examples from the Suez rift[J].Petroleum Geoscience,1999,5(2):109-116.
[26]Wibberley C A J,Petit J P,Rives T.Mechanics of Cataclastic‘Deformation Band’Faulting in High-Porosity Sandstone,Provence[J].Comptes Rendus de I’Acade'mie des Sciences:Se’rie IIA,2000,331(6):419-425.
[27]Underhill J R,Woodcock N H.Faulting Mechanisms in High-Porosity Sandstones:New Red Sandstone,Arran,Scotland[C]//Jones M E,Preston R M F.Deformation of Sediments and Sedimentary.London:Geological Society Special Publications,1987:91-105.
[28]Beach A,Brown J L,Welbon A I,et al.Characteristics of Fault Zones in Sandstones from NW England:Application to Fault Transmissibility[C]//Meadows N S,Trueblood S P,Hardman M,et al.Petroleum Geology of the Irish Sea and Adjacent Areas.London:Geological Society Special Publications,1997:315-324.
[29]Knott S D.Fault Seal Analysis in the North Sea[J].AAPG,1993,77(5):778-792.
[30]Pittman E D.Effect of Fault-Related Granulation on Porosity and Permeability of Quartz Sandstones,Simpson Group(Ordovician)Oklahoma[J].AAPG,1981,65(11):2381-2387.
[31]Lothe A E,Gabrielsen R H,Bjørnevoll-Hagen N,et al.An Experimental Study of the Texture of Deformation Bands:Effects on the Porosity and Permeability of Sandstones[J].Petroleum Geoscience,2002,8(3):195-207.
[32]Jamison W R,Stearns D W.Tectonic Deformation of Wingate Sandstone,Colorado National Monument[J].AAPG,1982,66(12):2584-2608.
[33]Davis G H.Structural Geology of the Colorado Plateau Region of Southern Utah[M].New York:Geological Society of America,1999.
[34]Rawling G C,Goodwin L B.Cataclasis and Particulate Flow in Faulted,Poorly Lithified Sediments[J].Journal of Structural Geology,2003,25(3):317-331.
[35]Lucas S E,Moore J C.Cataclastic Deformation in Accretionary Wedges:Deep Sea Drilling Project Leg 66,Southern Mexico,and On-Land Examples from Barbados and Kodiak Islands[C]//Moore C D.Structural Fabrics in Deep Sea Drilling Project Cores from Forearc Region.New York:Geological Society of America,1986:89-103.
[36]Karig D E,Lundberg N.Deformation Bands from the Toe of the Nankai Accretionary Prism[J].Journal of Geophysical Research,1990,95(B6):9099-9109.
[37]Ujiie K,Maltman A J,Sa'nchez-Go'mez M.Origin of Deformation Bands in Argillaceous Sediments at the Toe of the Nankai Accretionary Prism,Southwest Japan[J].Journal of Structural Geology,2004,26(2):221-231.
[38]Cashman S,Cashman K.Cataclasis and Deformation-Band Formation in Unconsolidated Marine Terrace Sand,Humboldt County,California[J].Geology,2000,28(2):111-114.
[39]Hesthammer J,Fossen H.Evolution and Geometries of Gravitational Collapse Structures with Examples from the Statfjord Field,Northern North Sea[J].Marine and Petroleum Geology,1999,16(3):259-281.
[40]Jennifer E W,Laurel B G,Claudia J Lewis.Deformation Bands in Nonwelded Ignimbrites:Petrophysical Controls on Fault-Zone Deformation and Evidence of Preferential Fluid Flow[J].Geological Society of America,2003,31(10):39-45.
[41]Antonellini M,Aydin A.Effect of Faulting on Fluid Flow in Porous Sandstones:Petrophysicial Properties[J].AAPG,1994,78:355-377.
[42]Hooke R,Iverson N.Grain-Size Distribution in Deforming Sub-Glacial Tills:Role of Grain Fracture[J].Geology,1995,23:57-60.
[43]Fossen H,Bale A.Deformation Bands and Their Influence on Fluid Flow[J].AAPG,2007,91(12):1685-1700.
[44]Mair K,Main I,Elphick S.Sequential Growth of Deformation Bands in the Laboratory[J].Journal of Structural Geology,2000,22(1):25-42.
[45]Fossen H,Johansen S E,Hesthammer J,et al.Fault Interaction in Porous Sandstone and Implications for Reservoir Management:Examples from Southern Utah[J].AAPG,2005,89(12):1593-1606.
[46]Antonellini M,Aydin A.Effect of Faulting on Fluid Flow in Porous Sandstones:Geometry and Spatial Distribution[J].AAPG,1995,79(5):642-671.
[47]Matthai S K,Aydin A,Pollard D,et al.Numerical Simulation of Departures from Radial Drawdown in Faulted Sandstone Reservoir with Joints and Deformation Bands[C]//Jones G,Fisher Q J,Knipe R J.Faulting,Fault Sealing,and Fluid flow in Hydrocarbon Reservoirs.London:Geological Society Special Publications,1998:157-192.
[48]Harper T R,Lundin E R.Fault Seal Analysis:Reducing Our Dependence on Empiricism[J].Hydrocarbon Seals:Importance for Exploration and Production,1997,7:149-164.
[49]Gibson R G.Physical Character and Fluid-Flow Properties of Sandstone-Derived Fault Zones[J].Geological Society,London,Special Publication,1998,127(1):83-97.
[50]Hesthammer J,Bjørkum P A,Watts L.The Effect of Temperature on Sealing Capacity of Faults in Sandstone Reservoirs:Examples from the Gullfaks and Gullfaks Sør Fields,North Sea[J].AAPG,2002,86(10):1733-1751.
[51]Fossen H,Hesthammer J.Possible Absence of Small Faults in the Gullfaks Field,Northern North Sea:Implication for Downscaling of Fault in Some Porous Sandstone[J].Journal of Structural Geology,2000,22(7):851-863.
[52]Hesthammer J,Fossen H.Structural Core Analysis from the Gullfaks Area,Northern North Sea[J].Marine and Petroleum Geology,2001,18(3):411-439.
[53]Sibson R H.Fault Rocks and Fault Mechanisms[J].Journal of Geology Society London,1977,133(3):191-214.
[54]Knipe R J.Juxtaposition and Seal Diagrams to Help Analyse Fault Seals in Hydrocarbon Reservoirs[J].AAPG,1997,81(2):187-195.
[55]Davatzes N C,Aydin A.Overprinting Faulting Mechanisms in High Porosity Sandstones of SE Utah[J].Journal of Structural Geology,2003,25(11):1795-1813.