Ha+1,p(A,B)⊂Ha,p(A,B).
(10)
证明设f(z)∈Ha+1,p(A,B),并令
(11)
其中ω(0)=0,由(7)与(11)得
zp+1(Lp(a,c)f(z))′=
(12)
这与f(z)∈Ha+1,p(A,B)相矛盾,所以|ω(z)|<1,(z∈D).则根据(11)得
所以f(z)∈Ha,p(A,B).定理证毕.
对于f(z)∈Σp,利用积分算子Jv,p定义函数Fv(z):
Fv(z)=Jv,pf(z)=
(13)
由(5)与(13)得
z(Lp(a,c)Fv(z))′=
vLp(a,c)f(z)-(v+p)Lp(a,c)Fv(z).
(14)
定理2定理条件同定理1条件,若f(z)∈Ha,p(A,B),Fv(z)如式(14)定义,则Fv(z)∈Ha,p(A,B).
证明令
(15)
其中ω(0)=0,利用(14)得
zp+1(Lp(a,c)Fv(z))′=
(16)
余下定理证明与定理1方法类似,略.
2 函数类
在此部分内容中,总是设定-1≤B<0.
(17)
结论是精确的.
(18)
则
考虑z取实值,令z→1-,由(18)得
即
反之,若(17)成立,令|z|=1,由式(9)与式(17)得
结论对
(19)
(k=p,p+1,p+2,…)
是精确的.
结论对(19)是精确的.
(ⅰ) 若数列{Tk}是非降的,则
(20)
(21)
则结论(20)(21)易得.
(ⅰ)f(z)在圆|z|(22)
(|z|其中
(23)
(ⅱ)f(z)在圆|z|(24)
(|z|其中
(25)
证明(ⅰ)由(9)可得
要证
(0≤ρ
即证
也即证
(26)
由(23)可得(26).
以下证明与(ⅰ)相同,略.
以上两结论对(19)是精确的.
参考文献:
[1] RUSCHEWEYH S T. New criteria for univalent functions[J]. Proceedings of the American Mathematical Society, 1975, 49: 109-115.
[2] GOEL R M, SOHI N S. A new criterion forp-valent functions[J]. Proceedings of the American Mathematical Society, 1980, 78(3): 353-357.
[3] LIU Jinlin, SRIVASTAVA H M. Subclasses of meromorphically multivalent functions associated with a certain linear operator[J]. Mathematical and Computer Modelling, 2004, 39: 35-44.
[4] JACK I S. Functions starlike and convex of orderα[J]. London Mathematical Society Series, 1971, 23: 469-474.
[5] CHO N E. The Noor integral operator and strongly close-to-convex functions[J]. Journal of Mathematical Analysis and Applications, 2003, 283: 202-212.
[6] LIU Jinlin. The Noor integral and strongly starlike functions[J]. Journal of Mathematical Analysis and Applications, 2001, 261: 441-447.
[7] MACGREGOR T H. The radius of univalence of certain analytic functions[J]. Proceedings of the American Mathematical Society, 1963, 14: 514-520.
[8] DZIOK J, SRIVASTAVA H M. Classes of analytic functions associated with the generalized hypergeometric functions[J]. Applied Mathematics and Computation, 1999, 103: 1-13.
[9] 程艳莉,刘金林.一个线性算子及与之相关的亚纯多叶函数类[J].扬州大学学报:自然科学版,2004,7(2):10-12.
[10] 杨定恭.关于具有变辐角的某些解析函数[J].苏州大学学报:自然科学版,1992,8(1):1-6.
[11] 韦叶,秦涛.某一线性算子在亚纯多叶函数上的应用[J].淮海工学院学报:自然科学版,2010,19(3):1-4.