APP下载

钢板弹簧悬架的模拟

2014-09-17范永君潘景宇

中国高新技术企业 2014年18期
关键词:悬架

范永君 潘景宇

摘要:为了更好地分析了解重载汽车钢板弹簧悬架受力后的形变及应力分析。文章先通过分析传统分析方法的不足之处,然后在传统方法缺点的基础上说明了现代有限元分析方法更符合实际状况,得到了钢板弹簧总成加载一定的载荷后的应力分布和弹簧变形情况的精确结果。

关键词:钢板弹簧;悬架;解析法;有限元分析法

中图分类号:U461 文献标识码:A 文章编号:1009-2374(2014)27-0033-02

在重载汽车上,钢板弹簧作为汽车悬架的弹性元件,是汽车容易损坏的元件,其好坏决定了汽车的各种性能。钢板弹簧在整车上不光是弹性元件,它还在工作时传递除垂直方向外其他方向的力和力矩,并在传递这些力或力矩的同时起到导向作用。而且当弹簧振动时两板片之间的接触、摩擦还可以充当一定的阻尼器件,起到阻尼作用。尽管钢板弹簧在工作时负荷高,易损坏,但钢板弹簧结构简单,制造、维修快捷方便,所以作为重型汽车的悬架被广泛使用。虽然自然状态下的钢板弹簧几何形状简单,但是在其受到载荷时却会有大变形(几何非线性)、且板片间的接触(状态非线性)等多种非线性因素是非常复杂且这些因素在应力分析是难以处理的。

1 解析法

传统的钢板弹簧分析是把它简化为悬臂梁,运用材料力学的相关理论进行计算分析。而实际工作状态下的钢板弹簧受力变形很复杂,因为既有大变形又有板片之间摩擦非线性因素的影响。所以,利用解析法对钢板弹簧进行力学分析,必须将它简化为具有理想的线性变形和无摩擦的力学模型。这样就必须是假设在一定的条件下,才能建立起钢板弹簧力学模型,且这样的模型是过于简单的。当钢板弹簧所受为垂向载荷时,实际中通常采用下面的方法进行计算分析:

1.1 共同曲率法

该方法是前苏联的帕尔希洛夫斯基提出的,通常我们又称它为展开法,它假定在弹簧变形时各板片一旦接触便不会再分离,所以不再会有在一起的各片有共同的曲率。而且,假定各簧片上的弯矩也是连续分布的。在这两个假定的基础上建立模型进行计算分析可得出各个簧片的应力变形。很明显,这一方法对弹簧进行力学分析的时候,忽略到了板片之间的摩擦,所以该方法的结算结果与实际值存在一定的误差。

1.2 集中载荷法

这一方法是假定钢板弹簧只在板端有力的传递,而且同样假设在外载荷作用下板簧接触部分一旦接触后不再分开。这里也忽略板片之间的摩擦作用。该计算方法也是把钢板弹簧简化为悬臂梁模型,进行计算。在实际计算分析中由于汽车上用的钢板弹簧有对称性,且装配时固定条件也是对称的,所以可以建立一半的模型进行计算。

可以看出这两个方法都必须在假定一定条件成立的基础上,在不同程度和角度上对钢板弹簧进行了简化。但是,这两种方法都忽略了钢板弹簧在实际工作状态下的复杂因素,如较大变形、摩擦和阻尼等。所以导致这两种方法分析计算的结果都存在着不同程度的误差。因此,对于钢板弹簧实际存在的这种大变形、接触等非线性状态,我们采取有限元法来对钢板弹簧的装配预应、刚度等进行分析。

2 有限元法

有限元法是把无限自由度的连续体离散化,从而变为有限个单元节点参数进行计算分析的方法。它的特点是不需作任何假设,便可模拟实际工作状态下的连续体。尽管这一方法的分析结果也是不能够完全没有误差,但是可以通过选择适当的单元体的形状与数量,这样便使得分析结果达到要求的精度。有限元分析法可以建立复杂的几何形状或边界条件、复杂的材料的模型。所以比较而言用有限元法计算钢板弹簧的应力问题,理论上更严密、模型更准确,这样分析结果精度更高。

2.1 钢板弹簧的有限元建模

用ANSYS12.0建立实体模型,建模时需要注意的是,由于钢板弹簧在装配前就具有一定曲率半径,是弧形而非平直的,所以要根据实际物体尺寸参数建立其三维几何模型,本文对简化型(不带卷耳)的钢板弹簧进行分析,并且建模时忽略其中间的螺栓孔,三片钢板弹簧选择为同曲率。因为重载汽车钢板弹簧是对称结构,且在装配过程中受载荷和约束都是对称的,这里便可以对模型进行简化,所以建立钢板弹簧的1/4模型。

2.2 定义接触对

本次采用面-面接触单元来模拟板簧之间的接触,根据实际情况分别选择合适的类型来描述接触对的目标面单元和接触面单元。在指定接触面和目标面时,应该特别注意的是接触单元应被控制不得穿透目标面。钢与钢之间有润滑接触摩擦时,其静摩擦系数选择为0.1~0.12,所以本次分析各簧片之间的摩擦系数为0.1。通过Gul命令mainmenu——preproeessor——realconstant——Add——CONTA173即可对实常数进行定义。通过GUI命令mainmenu——preproeesso,——Elementtype——Add——TARGE170——options即设置关键字。

通过接触向导,将整个三片钢板弹簧总成定义2个接触对,每个接触对有一个目标面和一个接触面。

2.3 模型约束及模型的加载

因为所建模型为1/4模型,对称面上的约束都相同,分析中控制三片钢板弹簧中心截面每片弹簧截面的X、Y和Z方向的位移,且要模拟中心螺栓拧紧状态下及钢板弹簧的装配中的应力问题。

2.4 计算结果与分析

由上述加载后应力学分析模型图上的应力分布,可直观得出钢板弹簧各部分应力大小分布情况,这为应力分析及产品优化提供了依据。且从上图可得出:加载后所受应力最大处是第一片钢板弹簧的端部。由于对模型的简化较多,使得这次得出的分析结果在一定程度上会有偏差。所以,以后需深入研究建立更准确模型来进行模拟分析。

3 结语

钢板弹簧板片之间的接触情况是非常复杂的,且载荷变化,各片之间的接触情况亦随之变化。在研究分析钢板簧力学特性时,板片间的接触摩擦对其结果的影响不容忽视。在考虑片间接触及其几何非线性的情况下,利用ANSYS有限元软件,对某三片等截面钢板弹簧模型其满载状况加载下的应力分布进行了模拟分析。需要注意的是,当表面接触应力较大时叶片的磨损会加速,并产生裂纹导致钢板弹簧疲劳损坏。

参考文献

[1] 周继铭.钢板弹簧非线性模型的概述和分析[J].锦州工学院报,1991,10(2).

[2] 黄向东.汽车悬架系统的有限元分析法及其应用[J].中国机械工程,1994,(5).

[3] 郑银环,张仲甫.钢板弹簧的非线性接触分析及试验研究[J].武汉理工大学报,2008,30(8).

[4] 丁能根,马建军.钢板弹簧迟滞特性的有限元分析

[J].汽车工程,2003,25(1).

[5] 王玉超,周锋.Marc有限元分析在钢板弹簧设计中的应用[J].现代工程,2006,(12).

作者简介:范永君(1990-),女,山东聊城人,长安大学汽车学院硕士研究生,研究方向:车辆NVH研究;潘景宇(1991-),男,山东聊城人,西北工业大学自动化学院硕士研究生,研究方向:航空电气工程。

摘要:为了更好地分析了解重载汽车钢板弹簧悬架受力后的形变及应力分析。文章先通过分析传统分析方法的不足之处,然后在传统方法缺点的基础上说明了现代有限元分析方法更符合实际状况,得到了钢板弹簧总成加载一定的载荷后的应力分布和弹簧变形情况的精确结果。

关键词:钢板弹簧;悬架;解析法;有限元分析法

中图分类号:U461 文献标识码:A 文章编号:1009-2374(2014)27-0033-02

在重载汽车上,钢板弹簧作为汽车悬架的弹性元件,是汽车容易损坏的元件,其好坏决定了汽车的各种性能。钢板弹簧在整车上不光是弹性元件,它还在工作时传递除垂直方向外其他方向的力和力矩,并在传递这些力或力矩的同时起到导向作用。而且当弹簧振动时两板片之间的接触、摩擦还可以充当一定的阻尼器件,起到阻尼作用。尽管钢板弹簧在工作时负荷高,易损坏,但钢板弹簧结构简单,制造、维修快捷方便,所以作为重型汽车的悬架被广泛使用。虽然自然状态下的钢板弹簧几何形状简单,但是在其受到载荷时却会有大变形(几何非线性)、且板片间的接触(状态非线性)等多种非线性因素是非常复杂且这些因素在应力分析是难以处理的。

1 解析法

传统的钢板弹簧分析是把它简化为悬臂梁,运用材料力学的相关理论进行计算分析。而实际工作状态下的钢板弹簧受力变形很复杂,因为既有大变形又有板片之间摩擦非线性因素的影响。所以,利用解析法对钢板弹簧进行力学分析,必须将它简化为具有理想的线性变形和无摩擦的力学模型。这样就必须是假设在一定的条件下,才能建立起钢板弹簧力学模型,且这样的模型是过于简单的。当钢板弹簧所受为垂向载荷时,实际中通常采用下面的方法进行计算分析:

1.1 共同曲率法

该方法是前苏联的帕尔希洛夫斯基提出的,通常我们又称它为展开法,它假定在弹簧变形时各板片一旦接触便不会再分离,所以不再会有在一起的各片有共同的曲率。而且,假定各簧片上的弯矩也是连续分布的。在这两个假定的基础上建立模型进行计算分析可得出各个簧片的应力变形。很明显,这一方法对弹簧进行力学分析的时候,忽略到了板片之间的摩擦,所以该方法的结算结果与实际值存在一定的误差。

1.2 集中载荷法

这一方法是假定钢板弹簧只在板端有力的传递,而且同样假设在外载荷作用下板簧接触部分一旦接触后不再分开。这里也忽略板片之间的摩擦作用。该计算方法也是把钢板弹簧简化为悬臂梁模型,进行计算。在实际计算分析中由于汽车上用的钢板弹簧有对称性,且装配时固定条件也是对称的,所以可以建立一半的模型进行计算。

可以看出这两个方法都必须在假定一定条件成立的基础上,在不同程度和角度上对钢板弹簧进行了简化。但是,这两种方法都忽略了钢板弹簧在实际工作状态下的复杂因素,如较大变形、摩擦和阻尼等。所以导致这两种方法分析计算的结果都存在着不同程度的误差。因此,对于钢板弹簧实际存在的这种大变形、接触等非线性状态,我们采取有限元法来对钢板弹簧的装配预应、刚度等进行分析。

2 有限元法

有限元法是把无限自由度的连续体离散化,从而变为有限个单元节点参数进行计算分析的方法。它的特点是不需作任何假设,便可模拟实际工作状态下的连续体。尽管这一方法的分析结果也是不能够完全没有误差,但是可以通过选择适当的单元体的形状与数量,这样便使得分析结果达到要求的精度。有限元分析法可以建立复杂的几何形状或边界条件、复杂的材料的模型。所以比较而言用有限元法计算钢板弹簧的应力问题,理论上更严密、模型更准确,这样分析结果精度更高。

2.1 钢板弹簧的有限元建模

用ANSYS12.0建立实体模型,建模时需要注意的是,由于钢板弹簧在装配前就具有一定曲率半径,是弧形而非平直的,所以要根据实际物体尺寸参数建立其三维几何模型,本文对简化型(不带卷耳)的钢板弹簧进行分析,并且建模时忽略其中间的螺栓孔,三片钢板弹簧选择为同曲率。因为重载汽车钢板弹簧是对称结构,且在装配过程中受载荷和约束都是对称的,这里便可以对模型进行简化,所以建立钢板弹簧的1/4模型。

2.2 定义接触对

本次采用面-面接触单元来模拟板簧之间的接触,根据实际情况分别选择合适的类型来描述接触对的目标面单元和接触面单元。在指定接触面和目标面时,应该特别注意的是接触单元应被控制不得穿透目标面。钢与钢之间有润滑接触摩擦时,其静摩擦系数选择为0.1~0.12,所以本次分析各簧片之间的摩擦系数为0.1。通过Gul命令mainmenu——preproeessor——realconstant——Add——CONTA173即可对实常数进行定义。通过GUI命令mainmenu——preproeesso,——Elementtype——Add——TARGE170——options即设置关键字。

通过接触向导,将整个三片钢板弹簧总成定义2个接触对,每个接触对有一个目标面和一个接触面。

2.3 模型约束及模型的加载

因为所建模型为1/4模型,对称面上的约束都相同,分析中控制三片钢板弹簧中心截面每片弹簧截面的X、Y和Z方向的位移,且要模拟中心螺栓拧紧状态下及钢板弹簧的装配中的应力问题。

2.4 计算结果与分析

由上述加载后应力学分析模型图上的应力分布,可直观得出钢板弹簧各部分应力大小分布情况,这为应力分析及产品优化提供了依据。且从上图可得出:加载后所受应力最大处是第一片钢板弹簧的端部。由于对模型的简化较多,使得这次得出的分析结果在一定程度上会有偏差。所以,以后需深入研究建立更准确模型来进行模拟分析。

3 结语

钢板弹簧板片之间的接触情况是非常复杂的,且载荷变化,各片之间的接触情况亦随之变化。在研究分析钢板簧力学特性时,板片间的接触摩擦对其结果的影响不容忽视。在考虑片间接触及其几何非线性的情况下,利用ANSYS有限元软件,对某三片等截面钢板弹簧模型其满载状况加载下的应力分布进行了模拟分析。需要注意的是,当表面接触应力较大时叶片的磨损会加速,并产生裂纹导致钢板弹簧疲劳损坏。

参考文献

[1] 周继铭.钢板弹簧非线性模型的概述和分析[J].锦州工学院报,1991,10(2).

[2] 黄向东.汽车悬架系统的有限元分析法及其应用[J].中国机械工程,1994,(5).

[3] 郑银环,张仲甫.钢板弹簧的非线性接触分析及试验研究[J].武汉理工大学报,2008,30(8).

[4] 丁能根,马建军.钢板弹簧迟滞特性的有限元分析

[J].汽车工程,2003,25(1).

[5] 王玉超,周锋.Marc有限元分析在钢板弹簧设计中的应用[J].现代工程,2006,(12).

作者简介:范永君(1990-),女,山东聊城人,长安大学汽车学院硕士研究生,研究方向:车辆NVH研究;潘景宇(1991-),男,山东聊城人,西北工业大学自动化学院硕士研究生,研究方向:航空电气工程。

摘要:为了更好地分析了解重载汽车钢板弹簧悬架受力后的形变及应力分析。文章先通过分析传统分析方法的不足之处,然后在传统方法缺点的基础上说明了现代有限元分析方法更符合实际状况,得到了钢板弹簧总成加载一定的载荷后的应力分布和弹簧变形情况的精确结果。

关键词:钢板弹簧;悬架;解析法;有限元分析法

中图分类号:U461 文献标识码:A 文章编号:1009-2374(2014)27-0033-02

在重载汽车上,钢板弹簧作为汽车悬架的弹性元件,是汽车容易损坏的元件,其好坏决定了汽车的各种性能。钢板弹簧在整车上不光是弹性元件,它还在工作时传递除垂直方向外其他方向的力和力矩,并在传递这些力或力矩的同时起到导向作用。而且当弹簧振动时两板片之间的接触、摩擦还可以充当一定的阻尼器件,起到阻尼作用。尽管钢板弹簧在工作时负荷高,易损坏,但钢板弹簧结构简单,制造、维修快捷方便,所以作为重型汽车的悬架被广泛使用。虽然自然状态下的钢板弹簧几何形状简单,但是在其受到载荷时却会有大变形(几何非线性)、且板片间的接触(状态非线性)等多种非线性因素是非常复杂且这些因素在应力分析是难以处理的。

1 解析法

传统的钢板弹簧分析是把它简化为悬臂梁,运用材料力学的相关理论进行计算分析。而实际工作状态下的钢板弹簧受力变形很复杂,因为既有大变形又有板片之间摩擦非线性因素的影响。所以,利用解析法对钢板弹簧进行力学分析,必须将它简化为具有理想的线性变形和无摩擦的力学模型。这样就必须是假设在一定的条件下,才能建立起钢板弹簧力学模型,且这样的模型是过于简单的。当钢板弹簧所受为垂向载荷时,实际中通常采用下面的方法进行计算分析:

1.1 共同曲率法

该方法是前苏联的帕尔希洛夫斯基提出的,通常我们又称它为展开法,它假定在弹簧变形时各板片一旦接触便不会再分离,所以不再会有在一起的各片有共同的曲率。而且,假定各簧片上的弯矩也是连续分布的。在这两个假定的基础上建立模型进行计算分析可得出各个簧片的应力变形。很明显,这一方法对弹簧进行力学分析的时候,忽略到了板片之间的摩擦,所以该方法的结算结果与实际值存在一定的误差。

1.2 集中载荷法

这一方法是假定钢板弹簧只在板端有力的传递,而且同样假设在外载荷作用下板簧接触部分一旦接触后不再分开。这里也忽略板片之间的摩擦作用。该计算方法也是把钢板弹簧简化为悬臂梁模型,进行计算。在实际计算分析中由于汽车上用的钢板弹簧有对称性,且装配时固定条件也是对称的,所以可以建立一半的模型进行计算。

可以看出这两个方法都必须在假定一定条件成立的基础上,在不同程度和角度上对钢板弹簧进行了简化。但是,这两种方法都忽略了钢板弹簧在实际工作状态下的复杂因素,如较大变形、摩擦和阻尼等。所以导致这两种方法分析计算的结果都存在着不同程度的误差。因此,对于钢板弹簧实际存在的这种大变形、接触等非线性状态,我们采取有限元法来对钢板弹簧的装配预应、刚度等进行分析。

2 有限元法

有限元法是把无限自由度的连续体离散化,从而变为有限个单元节点参数进行计算分析的方法。它的特点是不需作任何假设,便可模拟实际工作状态下的连续体。尽管这一方法的分析结果也是不能够完全没有误差,但是可以通过选择适当的单元体的形状与数量,这样便使得分析结果达到要求的精度。有限元分析法可以建立复杂的几何形状或边界条件、复杂的材料的模型。所以比较而言用有限元法计算钢板弹簧的应力问题,理论上更严密、模型更准确,这样分析结果精度更高。

2.1 钢板弹簧的有限元建模

用ANSYS12.0建立实体模型,建模时需要注意的是,由于钢板弹簧在装配前就具有一定曲率半径,是弧形而非平直的,所以要根据实际物体尺寸参数建立其三维几何模型,本文对简化型(不带卷耳)的钢板弹簧进行分析,并且建模时忽略其中间的螺栓孔,三片钢板弹簧选择为同曲率。因为重载汽车钢板弹簧是对称结构,且在装配过程中受载荷和约束都是对称的,这里便可以对模型进行简化,所以建立钢板弹簧的1/4模型。

2.2 定义接触对

本次采用面-面接触单元来模拟板簧之间的接触,根据实际情况分别选择合适的类型来描述接触对的目标面单元和接触面单元。在指定接触面和目标面时,应该特别注意的是接触单元应被控制不得穿透目标面。钢与钢之间有润滑接触摩擦时,其静摩擦系数选择为0.1~0.12,所以本次分析各簧片之间的摩擦系数为0.1。通过Gul命令mainmenu——preproeessor——realconstant——Add——CONTA173即可对实常数进行定义。通过GUI命令mainmenu——preproeesso,——Elementtype——Add——TARGE170——options即设置关键字。

通过接触向导,将整个三片钢板弹簧总成定义2个接触对,每个接触对有一个目标面和一个接触面。

2.3 模型约束及模型的加载

因为所建模型为1/4模型,对称面上的约束都相同,分析中控制三片钢板弹簧中心截面每片弹簧截面的X、Y和Z方向的位移,且要模拟中心螺栓拧紧状态下及钢板弹簧的装配中的应力问题。

2.4 计算结果与分析

由上述加载后应力学分析模型图上的应力分布,可直观得出钢板弹簧各部分应力大小分布情况,这为应力分析及产品优化提供了依据。且从上图可得出:加载后所受应力最大处是第一片钢板弹簧的端部。由于对模型的简化较多,使得这次得出的分析结果在一定程度上会有偏差。所以,以后需深入研究建立更准确模型来进行模拟分析。

3 结语

钢板弹簧板片之间的接触情况是非常复杂的,且载荷变化,各片之间的接触情况亦随之变化。在研究分析钢板簧力学特性时,板片间的接触摩擦对其结果的影响不容忽视。在考虑片间接触及其几何非线性的情况下,利用ANSYS有限元软件,对某三片等截面钢板弹簧模型其满载状况加载下的应力分布进行了模拟分析。需要注意的是,当表面接触应力较大时叶片的磨损会加速,并产生裂纹导致钢板弹簧疲劳损坏。

参考文献

[1] 周继铭.钢板弹簧非线性模型的概述和分析[J].锦州工学院报,1991,10(2).

[2] 黄向东.汽车悬架系统的有限元分析法及其应用[J].中国机械工程,1994,(5).

[3] 郑银环,张仲甫.钢板弹簧的非线性接触分析及试验研究[J].武汉理工大学报,2008,30(8).

[4] 丁能根,马建军.钢板弹簧迟滞特性的有限元分析

[J].汽车工程,2003,25(1).

[5] 王玉超,周锋.Marc有限元分析在钢板弹簧设计中的应用[J].现代工程,2006,(12).

作者简介:范永君(1990-),女,山东聊城人,长安大学汽车学院硕士研究生,研究方向:车辆NVH研究;潘景宇(1991-),男,山东聊城人,西北工业大学自动化学院硕士研究生,研究方向:航空电气工程。

猜你喜欢

悬架
让人讨厌的晕车——认识汽车悬架与减震器
汽车被动悬架的建模与仿真
一种越野车变刚度悬架系统计算仿真及路试验证
悬架性能匹配试验台设计
汽车主流悬架系统对比与分析
前后悬架抗制动点头率和抗加速仰头率计算
ECAS空气悬架电控系统介绍
皮卡板簧悬架设计
基于MATLAB/Simulink的主动悬架仿真研究
汽车非线性悬架的最优分数阶PI~λD~μ控制