APP下载

PVK有机薄膜对PF?BT15聚合物发光二极管性能的影响

2014-09-17祝秋香肖卫初张学军简正波

现代电子技术 2014年17期

祝秋香 肖卫初 张学军 简正波

摘 要: 采用聚乙烯基咔唑(PVK)作为空穴传输层,PF?BT15作为发光层,制备了结构为ITO/PEDOT/ PVK(0~60 nm)/PF?BT15/Cs2CO3/Al的聚合物发光二极管。通过测试器件的电流密度?电压?发光亮度特性,研究了空穴传输层厚度对聚合物发光二级管器件性能的影响,优化了器件功能层的厚度匹配。实验结构表明,聚合物发光二极管的光电性能与空穴传输层的厚度密切相关,当转速约为2 000 r/s,浓度约为1%,膜厚约为40 nm时,其器件光电性能有较大的提高。

关键词: 聚乙烯基咔唑; FP?BT15; 聚合物发光二极管; 空穴传输层

中图分类号: TN710?34 文献标识码: A 文章编号: 1004?373X(2014)17?0110?03

Abstract: Taking polyvinyl carbazole as hole transport layer (HTL) and PF?BT15 as light?emitting layer, the polymer light?emitting diodes (PLEDs) with the structure of ITO/PEDOT/PVK(0~60 nm) / PF?BT15/Cs2CO3/Al were fabricated. By testing and analyzing the electric current density?voltage?luminance characteristics, influences of the thickness of HTL on PLED performance was investigated and the thickness matching of the device′s function layer was optimized. Experimental results show that optical and electrical properties of PLED are closely related to the thickness of HTL, and the photoelectric property of the device is improved more significantly when spin speed is about 2 000 r/s, concentration is about 1% and film thickness is 40 nm.

Keywords: polyvinyl carbazole; FP?BT15; polymer light?emitting diode; HTL

0 引 言

聚合物发光二极管(Polymer Light?Emitting Diodes,PLEDs)是一种由多层有机薄膜结构形成的电致发光器件,它的制作过程非常简单,而且驱动电压比较低 [1?3]。近年来,由于有机/聚合物发光材料具有一些特殊的优点,比如低驱动电压、高发光效率、能实现全色发光、良好的成膜性等,在发光管、平板显示方面的应用引起了人们的高度重视[4?5]。

1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件[6]。在20世纪60—80年代中期,相继有美国New York大学的Pope等人第一次发现有机材料单晶恩的电致发光现象[7],Partridge制作出第一个聚合物材料的发光器件[8],Vincett小组用真空蒸镀法制成了0.6 μm厚的蒽薄膜[9],有机电致研究徘徊在一个高电压、低亮度、低效率的水平上。直到1987年,美国柯达公司的C.W.Tang(邓青云)和VanSlyke采用真空蒸镀成膜制备出了一种高效的有机小分子发光二极管(OLED),其亮度达到了1 000 cd/m2,外量子效率高到1%,而驱动电压在10 V以下[10]。1990年,Burroughs等人将聚苯撑乙烯(PPV)的预聚体旋涂成膜[11],制成了单层结构的共轭聚合物电致发光器件。1992年,美国Uniax公司的Gustafsson、Y. Cao(曹镛)和Heeger等人在柔性塑料基底上实现了可弯曲的聚合物发光二极管[12]。这些工作拉开了高分子材料及器件研究的序幕,从此开辟了发光器件的一个新领域——聚合物发光二极管(PLEDs)。

在本文中,采用聚乙烯基咔唑(PVK)作为空穴传输层,PF?BT15作为发光层,制备了结构为ITO/ PEDOT/PVK(0~60 nm)/PF?BT15/Cs2CO3/Al的聚合物发光二极管。初步研究表明,在空穴注入层和发光层之间加入一层空穴传输层,能提高电流效率,改善器件性能。

1 实 验

聚合物发光二极管的基本结构属于夹层式的“三明治式”结构,并且一侧为透明电极,以便获得面发光,如图1所示。

PLEDs的基本结构主要由透明导电玻璃ITO阳极、聚合物发光层和金属阴极构成。根据发光层的构成,PLEDs器件又可以分为单层器件[13?14]、双层器件[15?16]和多层器件[17?18]。当加上足够的直流电压时,电子从低功函数的金属阴极,空穴从高功函数的ITO阳极分别向发光层注入。这两种载流子在外加电场作用下在有机层中迁移和复合形成激子,然后激子向基态跃迁而辐射发光。本文制备的器件采用多层结构。总的来说,旋涂了PVK的PLEDs器件的电流效率要高于没有旋涂PVK的电流效率。在电流为3 mA时,PVK厚度为40 nm的PLEDs器件的电流效率最高,接近0.6 cd/A。较大的电流效率意味着达到同样的亮度需要较小的电流,这样会减小器件在工作时候所释放的焦耳热,从而提高器件的稳定性和寿命。

通过以上的图表分析可以得知,聚合物发光二极管的光电性能与空穴传输层的厚度密切相关,当转速为2 000 r/m,浓度为1%,膜厚约为40 nm时,其器件光电性能有较大的提高。虽然旋涂了PVK的PLEDs器件并没有降低器件的开启电压,但是却提高了器件的发光亮度和电流效率,改善了器件的性能。

3 结 论

在PLEDs的空穴注入层PEDOT与发光层PF?BT15之间插入一层空穴传输层PVK,使发光器件具有较好的电压电流特性,改善了发光性能,优化了器件功能层的厚度匹配。当转速约为2 000 r/s,浓度约为1%,膜厚约为40 nm时,其电流效率较高,而且亮度较高。

参考文献

[1] ADACHI C, TOKIO S, TSUTSUI T, et al. Electroluminescence in organic films with three?layer structure [J]. Japanese Journal of Applied Physics, part 2, 1988, 27: L269?L271.

[2] YANG Y, HEEGER A J. Polyaniline as a transparent electrode for polymer light?emitting diodes: lower operating voltage and higher efficiency [J]. Applied Physics Letters, 1994, 64, 1245?1247.

[3] BERNIUS M T, INBASEKARAN M, BRIEN J O, et al. Pro?gress with light?emitting polymers [J]. Advanced Materials, 2000, 12(23): 1737?1750.

[4] 王立军,刘星元,宁永强,等.有机/聚合物激光[J].光机电信息, 2002(9):8?12.

[5] KRAFT A, GRIMSDALE A C, HOLMES A B. Electroluminescent conjugated polymers?seeing polymers in a new light [J]. Angewandte Chemie International Edition, 1998, 37(4): 402?428.

[6] DESTRIAU G. Reserches sur les Scintillations des Zinc aux Rayons [J]. Journal of Chem Phys, 1963, 33: 587?625.

[7] POPE M, KALLMANN H P, MAGNANTE P. Electroluminescence in organic crystals [J]. Journal of Chem Phys, 1963, 38: 2042?2043.

[8] PARTRIDGE R H. Radiation sources: US, 3 995 299 [P]. 1976?11?30.

[9] VINCETT P S, BARLOW W A, HANN R A, et al. Electrical conduction and low voltage blue electroluminescence in vacuum?deposited organic films [J]. Thin Solid Films, 1982, 94: 171?183.

[10] TANG C W, VAN SLYKE S A. Organic electroluminescent diodes [J]. Applied Physics Letters, 1987, 51: 913?915.

[11] BURROUGHES J H, BRADLEY D D C, BROWN A R, et al. Light?emitting diodes based on conjugated polymers [J]. Nature, 1990, 347: 539?541.

[12] GUSTAFSSON G, CAO Y, TREACY G M, et al. Flexible light?emitting diodes made from soluble conducting polymers [J]. Nature, 1992, 357: 477?479.

[13] SCOTT J C, KAUFMAN J H, BROCK P J, et al. Degradation and failure of MEH?PPV light?emitting diodes [J]. Journal of Applied Physics, 1996, 79: 2745?2751.

[14] CAMPBELL LAN H, FERRARIS J P, HAGLER T W, et al. Measuring internal electric fields in organic light?emitting diodes using electroabsorption spectroscopy [J]. Polym Advan Technol, 1997, 8: 417.

[15] CHAO Q L, CHEN S A. White light emission from exciplex in a bilayer device with two blue light?emitting polymers [J]. Applied Physics Letters, 1998, 73: 426?428.

[16] CAO Y, YU G, ZHANG C, et al. Polyer light?emitting diodes with polyethylene dioxythiophene?polystyrene sulfonate as the transparent anode [J]. Synth Met, 1997, 87: 171?174.

[17] FRIEND R H, GYMER R W, HOLMES A B, et al. Electroluminescence in conjugated polymers [J]. Nature, 1999, 397: 121?128.

[18] KIM D Y, CHO H N, KIM C Y. Blue light emitting polymers [J]. Progress in Polymer Science, 2000, 25: 1089?1139.

[19] BRAUN D, HEEGER A J. Visible light emission from semiconducting polymer diodes [J]. Applied Physics Letters, 1991, 58: 1982?1984.

3 结 论

在PLEDs的空穴注入层PEDOT与发光层PF?BT15之间插入一层空穴传输层PVK,使发光器件具有较好的电压电流特性,改善了发光性能,优化了器件功能层的厚度匹配。当转速约为2 000 r/s,浓度约为1%,膜厚约为40 nm时,其电流效率较高,而且亮度较高。

参考文献

[1] ADACHI C, TOKIO S, TSUTSUI T, et al. Electroluminescence in organic films with three?layer structure [J]. Japanese Journal of Applied Physics, part 2, 1988, 27: L269?L271.

[2] YANG Y, HEEGER A J. Polyaniline as a transparent electrode for polymer light?emitting diodes: lower operating voltage and higher efficiency [J]. Applied Physics Letters, 1994, 64, 1245?1247.

[3] BERNIUS M T, INBASEKARAN M, BRIEN J O, et al. Pro?gress with light?emitting polymers [J]. Advanced Materials, 2000, 12(23): 1737?1750.

[4] 王立军,刘星元,宁永强,等.有机/聚合物激光[J].光机电信息, 2002(9):8?12.

[5] KRAFT A, GRIMSDALE A C, HOLMES A B. Electroluminescent conjugated polymers?seeing polymers in a new light [J]. Angewandte Chemie International Edition, 1998, 37(4): 402?428.

[6] DESTRIAU G. Reserches sur les Scintillations des Zinc aux Rayons [J]. Journal of Chem Phys, 1963, 33: 587?625.

[7] POPE M, KALLMANN H P, MAGNANTE P. Electroluminescence in organic crystals [J]. Journal of Chem Phys, 1963, 38: 2042?2043.

[8] PARTRIDGE R H. Radiation sources: US, 3 995 299 [P]. 1976?11?30.

[9] VINCETT P S, BARLOW W A, HANN R A, et al. Electrical conduction and low voltage blue electroluminescence in vacuum?deposited organic films [J]. Thin Solid Films, 1982, 94: 171?183.

[10] TANG C W, VAN SLYKE S A. Organic electroluminescent diodes [J]. Applied Physics Letters, 1987, 51: 913?915.

[11] BURROUGHES J H, BRADLEY D D C, BROWN A R, et al. Light?emitting diodes based on conjugated polymers [J]. Nature, 1990, 347: 539?541.

[12] GUSTAFSSON G, CAO Y, TREACY G M, et al. Flexible light?emitting diodes made from soluble conducting polymers [J]. Nature, 1992, 357: 477?479.

[13] SCOTT J C, KAUFMAN J H, BROCK P J, et al. Degradation and failure of MEH?PPV light?emitting diodes [J]. Journal of Applied Physics, 1996, 79: 2745?2751.

[14] CAMPBELL LAN H, FERRARIS J P, HAGLER T W, et al. Measuring internal electric fields in organic light?emitting diodes using electroabsorption spectroscopy [J]. Polym Advan Technol, 1997, 8: 417.

[15] CHAO Q L, CHEN S A. White light emission from exciplex in a bilayer device with two blue light?emitting polymers [J]. Applied Physics Letters, 1998, 73: 426?428.

[16] CAO Y, YU G, ZHANG C, et al. Polyer light?emitting diodes with polyethylene dioxythiophene?polystyrene sulfonate as the transparent anode [J]. Synth Met, 1997, 87: 171?174.

[17] FRIEND R H, GYMER R W, HOLMES A B, et al. Electroluminescence in conjugated polymers [J]. Nature, 1999, 397: 121?128.

[18] KIM D Y, CHO H N, KIM C Y. Blue light emitting polymers [J]. Progress in Polymer Science, 2000, 25: 1089?1139.

[19] BRAUN D, HEEGER A J. Visible light emission from semiconducting polymer diodes [J]. Applied Physics Letters, 1991, 58: 1982?1984.

3 结 论

在PLEDs的空穴注入层PEDOT与发光层PF?BT15之间插入一层空穴传输层PVK,使发光器件具有较好的电压电流特性,改善了发光性能,优化了器件功能层的厚度匹配。当转速约为2 000 r/s,浓度约为1%,膜厚约为40 nm时,其电流效率较高,而且亮度较高。

参考文献

[1] ADACHI C, TOKIO S, TSUTSUI T, et al. Electroluminescence in organic films with three?layer structure [J]. Japanese Journal of Applied Physics, part 2, 1988, 27: L269?L271.

[2] YANG Y, HEEGER A J. Polyaniline as a transparent electrode for polymer light?emitting diodes: lower operating voltage and higher efficiency [J]. Applied Physics Letters, 1994, 64, 1245?1247.

[3] BERNIUS M T, INBASEKARAN M, BRIEN J O, et al. Pro?gress with light?emitting polymers [J]. Advanced Materials, 2000, 12(23): 1737?1750.

[4] 王立军,刘星元,宁永强,等.有机/聚合物激光[J].光机电信息, 2002(9):8?12.

[5] KRAFT A, GRIMSDALE A C, HOLMES A B. Electroluminescent conjugated polymers?seeing polymers in a new light [J]. Angewandte Chemie International Edition, 1998, 37(4): 402?428.

[6] DESTRIAU G. Reserches sur les Scintillations des Zinc aux Rayons [J]. Journal of Chem Phys, 1963, 33: 587?625.

[7] POPE M, KALLMANN H P, MAGNANTE P. Electroluminescence in organic crystals [J]. Journal of Chem Phys, 1963, 38: 2042?2043.

[8] PARTRIDGE R H. Radiation sources: US, 3 995 299 [P]. 1976?11?30.

[9] VINCETT P S, BARLOW W A, HANN R A, et al. Electrical conduction and low voltage blue electroluminescence in vacuum?deposited organic films [J]. Thin Solid Films, 1982, 94: 171?183.

[10] TANG C W, VAN SLYKE S A. Organic electroluminescent diodes [J]. Applied Physics Letters, 1987, 51: 913?915.

[11] BURROUGHES J H, BRADLEY D D C, BROWN A R, et al. Light?emitting diodes based on conjugated polymers [J]. Nature, 1990, 347: 539?541.

[12] GUSTAFSSON G, CAO Y, TREACY G M, et al. Flexible light?emitting diodes made from soluble conducting polymers [J]. Nature, 1992, 357: 477?479.

[13] SCOTT J C, KAUFMAN J H, BROCK P J, et al. Degradation and failure of MEH?PPV light?emitting diodes [J]. Journal of Applied Physics, 1996, 79: 2745?2751.

[14] CAMPBELL LAN H, FERRARIS J P, HAGLER T W, et al. Measuring internal electric fields in organic light?emitting diodes using electroabsorption spectroscopy [J]. Polym Advan Technol, 1997, 8: 417.

[15] CHAO Q L, CHEN S A. White light emission from exciplex in a bilayer device with two blue light?emitting polymers [J]. Applied Physics Letters, 1998, 73: 426?428.

[16] CAO Y, YU G, ZHANG C, et al. Polyer light?emitting diodes with polyethylene dioxythiophene?polystyrene sulfonate as the transparent anode [J]. Synth Met, 1997, 87: 171?174.

[17] FRIEND R H, GYMER R W, HOLMES A B, et al. Electroluminescence in conjugated polymers [J]. Nature, 1999, 397: 121?128.

[18] KIM D Y, CHO H N, KIM C Y. Blue light emitting polymers [J]. Progress in Polymer Science, 2000, 25: 1089?1139.

[19] BRAUN D, HEEGER A J. Visible light emission from semiconducting polymer diodes [J]. Applied Physics Letters, 1991, 58: 1982?1984.