APP下载

LTE中的关键技术及发展趋势探究

2014-09-11廖井丽

中国新通信 2014年11期
关键词:信道天线系统

【摘要】互联网时代的不断发展,改变着人们的生活和工作方式,人们便习惯于无时无刻享用宽带接入服务,所以移动宽带技术成为首选。现如今的宽带使用总用户中移动宽带用户占到了大部分,市场的成熟势必对移动通信网络的技术要求越来越严格,在移动设备完善的情况下便会追求更高的峰值速率和更短的延时,还有更高的灵活性和系统兼容性。

【关键词】LTE关键技术发展趋势

LTE技术是多种先进技术的集成者,它是3G无线通信技术的替代者,作为是4G时代可能的移动无线技术的标准之一,LTE技术的发展将会影响着整个移动通信产业技术的发展方向。

一、LTE产业发展现状

虽然3G通信技术在我国范围内兴起的时间不长,才在刚刚大规模部署的阶段,但4G的研发工作早已在各国不同地区开展了。随着移动设备的越来越高端,人们对上网的需求也不得已满足,热门对于2Mb/s的WCDMA R99传输速录和14.4Mb/s的R5 HSDPA的峰值率已经不能满足自身需求[1]。并且,OFDM技术作为无线通信技术发展的另一产物,将无线通信的接入速率提升到100Mb/s,这给3G信息技术带来了巨大的市场竞争压力。

二、LTE中的关键技术

1、OFDM技术

OFDMA技术其实就是LTE下行链路采用在循环前缀基础上的正交频分多址技术。首先在发射端将信号插入到循环冗余校验码中,然后对信道进行编码、信道交织、特征加扰等的处理来解决突发噪声对系统操作的影响,LTE系统一般采用QPSK、16QAM、64QAM三种方式[2]。

如图1就是LTE系统的发送接收模型,是一种采用了2*2的MIMO技术,一个码字到两层的映射方式。由于天线数量与码字数量不一致,所以需要将码映射到不同的发送天线上,由此便需要层映射和预编码的工作。层映射是将码字按照一定的规则流程映射到多层的过程,预编码则是将数据再次映射到不同的天线端口的过程。

在理解OFDM技术时,应注意区分于一般的频分复用FDM技术,正交频分复用技术是多载波通信的一种,并且在频道选择性信道中发挥着最大优势,各个子信道在正交频分复用系统中的时域中正交,并且重叠在频域中,其实现工作的基本原理就是通过串/并转换器将高速串行的数据流变为多个低速并行的比特流,并且每一个OFDM子信道只传输一个低速数据流。

2、多天线技术

现代的无线通信技术离不开天线的作用,所以天线性能是否优良也影响着整个通信系统的效果。在传统的通信技术中,天线技术从开始的单发/单收天线到单发/多收和多发/单收的发展阶段,在实际生活应用中我们也了解到,地面传输路径中信号的通信比其他路径如光纤、电缆、卫星等的信号要发展的慢一些。

而现如今的通信系统要想打破原有技术的束缚来获得更强大的信号功率和更优良的服务,可以从恶劣通信环境影响通信技术发展进行突破。所以就要不断提高发送信号的功率[3]。这在第三代通信系统中是不存在的买所以就会降低整个通信系统的性能影响通信技术的发展。所以人们对无线网技术的研究是具有重大突破性的。

3、MIMO技术

MIMO技术为通信技术中高速的数据信号传输技术带来了可能成为无线通信领域的一大新突破,它很大一定程度上是提升系统频率利用率。其工作原理就是基于通信系统的基础上采用其多輸入/输出的方式更多的发送与接收同时选择多天线单元,并且通过其信道途径中的多维度的特性。如图2所示。

MIMO技术特点是采用多远天线阵列在发送/接收端,得到不同的空间特性的空间向量基于无线信道中,有如在一个通用大空间的信道中又独自进行多个互不干扰的信道。这种技术可以带来空间的分集增益,这种新型MIMO技术创新的方法被称为空间分集。通过MIMO技术,天线阵列所传输的多个并行的信号数据,接收端可对其进行相应的数据标识,也就是说,不同的数据流对于接收端都是具有可利用和区分的空间特性的,在这时就具有了多维性。MIMO系统改变无线信道可看做是由M= min(nT,nR)个并行子信道组成,所以MIMO技术中的通信系统信道容量其实就是所有子信道通信系统容量的总和。在所有的发送和接收天线阵列都具有非相干特性的条件下,系统中每个子信道都可有相同的极限容量,整个信道极限容量将会有重大提升,公式如下:

C≈M·B·log2(1+SNR)

所以从上文分析及公式可以看出,MIMO技术的改善会对整个无线通信信道的容量进行全面提升,还有就是利用MIMO技术还可增加信道的可靠性来降低信道传输数据的错误率。

三、LTE中技术的发展趋势探究

作为我国最大的移动营运商,中国移动也将加入到LTE技术营运行列中,由于美国高通公司在3G时代占据主导地位,LTE正在努力避免高通的主要技术,所以大大削弱了高通在3G时代的地位。2007年11月底至12月初3GPP RAN38全会通过RAN1提交的融合帧结构方案,被正式写入3GPP标准,2008年,RAN4的工作、RAN5和核心网的相关标准制定工作的完成,又是一重大性进展。

LTE具有来自TD-SCDMA现有核心技术的继承和MIMO、OFDM主流技术有机结合,将显著提高新型技术的系统功能,也给4G标准中更多地专利技术提供了可能。

还有随着多媒体娱乐和网络游戏的开发,当前的传输速率已经达不到人们的要求,所以设计并实现了峰值速率的数据传输,并且具有良好的兼容性。

四、结束语

3GPP LTE技术作为重要的无线通信技术,OFDM技术很大程度上又提高了系统容量和系统的频谱效率。LTE 及 LTE-Advanced 等技术中必须应用更先进、资源利用率更高的技术如高阶MIMO技术、协调多点发送技术、等进一步提升整个系统的性能。

参考文献

[1]沈嘉,索士强,全海洋. 3GPP长期演进(LTE)技术原理与系统设计[M]. 北京:人民邮电出版社. 2008:16-46

[2]曾召华. LTE基础原理与关键技术[M]. 西安:西安电子科技大学出版社,2010:18-34

[3]孟祥娟. LTE下行同步技术设计与实现[D]. 硕士学位论文. 成都:电子科技大学,2008:25-40

作者简介:廖井丽(1977年),籍贯:四川大竹,学历:大学本科,职称:通信工程师,职称:通信工程师,研究方向:互联网等相关,反正与通信运营商服务内容相关的技术发展方向。

猜你喜欢

信道天线系统
Smartflower POP 一体式光伏系统
WJ-700无人机系统
基于PowerPC+FPGA显示系统
连通与提升系统的最后一块拼图 Audiolab 傲立 M-DAC mini
ETC相控阵天线与普通天线应用对比分析
ALLESS转动天线射频旋转维护与改造
理论宣讲要上接天线、下接地气
基于导频的OFDM信道估计技术
一种改进的基于DFT-MMSE的信道估计方法
基于MED信道选择和虚拟嵌入块的YASS改进算法