硫醚氧化成砜的新方法*
2014-08-29李学强1b姚新波
徐 建,李学强,1b,姚新波,董 莉
(1.宁夏大学 a.化学化工学院;b.宁夏天然药物工程技术中心,宁夏 银川 750021)
·研究简报·
硫醚氧化成砜的新方法*
徐 建1a,李学强1a,1b,姚新波1a,董 莉1a
(1.宁夏大学 a.化学化工学院;b.宁夏天然药物工程技术中心,宁夏 银川 750021)
以丙酮为溶剂,30%双氧水为氧化剂,钨酸钠为催化剂,研究了硫醚(烃基硫醚、苄基硫醚、不饱和硫醚、含二级胺的饱和硫醚、含三级胺的饱和硫醚)被氧化成相应砜的反应。结果表明,饱和烃基硫醚能方便的氧化为相应的砜类;苄基硫醚、含三级胺官能团的饱和硫醚也能氧化成相应的砜;含苄基和氨基的硫醚不能氧化成相应的砜。化合物的结构经1H NMR和13C NMR确证。
硫醚;双氧水;催化剂;氧化;砜;合成
砜类化合物不仅是有机合成中的重要中间体[1-3],而且多数具有广谱的生物活性,在杀虫、杀菌、除草、抗肿瘤、抗病毒、抗HIV-1、抗涝等药物中均表现出良好的作用[4-7],已广泛应用于农药和医药等领域[8-10]。
砜一般由硫醚或者亚砜直接氧化而得[11]。在已报道的氧化体系中,所用的氧化剂有:H2O2[12],NaClO[13],H5IO6[14],PhICl2[15],CrO3[16],KMnO4[17],KHSO5[18],AcO2H[19]和CF3CO3H[20]等。虽然上述氧化剂均可以将硫醚直接氧化成砜,但从原子经济性、环境无公害、操作安全和简便等角度出发,H2O2无疑是一种最受青睐的氧化剂[21]。以H2O2为氧化剂,助催化剂等氧化体系氧化硫醚已有报道,但是对于一些对酸、碱性敏感的含三级胺类的硫醚氧化的报道却很少。在已报道的一些方法中,也或多或少存在诸如反应条件剧烈、处理繁琐、价格昂贵(有的需要借助稀有昂贵的有机金属催化剂)、选择性氧化率不高等缺陷[22-23]。因此开发一种高效、简便的含活性基团的硫醚氧化成砜的方法不仅具有重要的经济效益,而且还具有良好的环境效益。
本课题组长期从事双氢青蒿素衍生物[24]的合成。2006年,Richard K Haynes[25]以青蒿素为起始原料,经6步反应合成了青蒿砜(Ⅰ)。该方法不仅路线繁琐,而且其中多步反应须在-78℃无水无氧条件下反应。本课题组通过对其工艺进行改进,以双氢青蒿素为起始原料,经两步反应便成功合成了双氢青蒿素硫醚(Ⅱ),但在Ⅱ氧化成Ⅰ的反应中遇到瓶颈。通过研究发现以H2O2为氧化剂,丙酮为溶剂,钨酸钠催化剂的条件下,Ⅱ可以高产率地氧化成Ⅰ,而且反应条件温、副产物少。
为了验证这一方法的通用性,本文以丙酮为溶剂,30%H2O2为氧化剂,钨酸钠为催化剂,研究了硫醚(1a~1c和3a~3e)被氧化成相应砜(2a~2c和4a~4e)的反应(Scheme 1)。研究结果表明,饱和烃基硫醚能方便的氧化为相应的砜类化合物;苄基硫醚、含三级胺官能团的饱和硫醚也能氧化成砜;含苄基和氨基的硫醚不能氧化成相应的砜。化合物的结构经1H NMR和13C NMR确证。
1 实验部分
1.1 仪器与试剂
Bruker Avance 400MHz型核磁共振仪(CDCl3为溶剂,TMS为内标)。
所用试剂均为分析纯或化学纯。
1.2 硫醚氧化成砜的通法
在反应瓶中依次加入硫醚2mmol,丙酮30.0mL和二水合钨酸钠100mg,搅拌使其溶解;慢慢滴加30%双氧水1.03mL(10mmol),回流(55℃)反应5h(TLC跟踪)。减压蒸除丙酮,加入饱和Na2S2O3溶液30.0mL,用乙酸乙酯(2×25mL)萃取,合并萃取液,用饱和食盐水洗涤,无水MgSO4干燥,浓缩后经硅胶柱色谱[梯度洗脱剂:V(石油醚)∶V(乙酸乙酯)=10∶1~6∶1]纯化得2a~2c和4b~4d(4a和4e因副产物太多,未能分离纯化)。
2a:白色固体,收率98.9%,m.p.86.9℃~87.5℃;1H NMRδ:2.97(s,3H),7.45~4.50(m,2H),7.54~7.58(m,1H),7.83~7.86(m,2H);13C NMRδ:44.23,127.07,129.21,133.57,140.28。
2b:白色固体,收率99.3%,m.p.122.3℃~123.0℃;1H NMRδ:7.36~7.54(m,6H),7.85~7.97(m,4H);13C NMRδ:127.46,129.22,133.19,141.35。
2c:白色固体,收率96.9%,m.p.99.6℃~100.5℃;1H NMRδ:2.97(s,3H),7.42(dd,J=2.0Hz,6.8Hz,2H),7.77(dd,J=1.8Hz,6.6Hz,2H);13C NMRδ:44.16,128.68,129.40,138.74,139.91。
4b:白色固体,收率74.9%,m.p.137.8℃~139.2℃;1H NMRδ:3.11~3.28(s,4H),3.87(d,J=10.0Hz,4H),4.50(s,2H),7.35~7.37(m,1H),7.40~7.45(m,2H),7.60(d,J=6.0Hz,2H);13C NMRδ:48.60,58.20,61.82,127.99,29.17,130.63,132.90。
4c:黄色黏稠固体,收率72.2%;1H NMRδ:-0.14~0.04(m,6H),0.71~0.81(m,9H),1.28(s,4H),1.40(d,J=6.0Hz,2H),1.79(s,2H),2.91(d,J=12.8Hz,2H),3.28(s,2H),3.46~3.52(m,4H),3.80(t,J=7.2Hz,2H),4.17(s,2H);13C NMRδ:-5.67,10.20,22.74,25.48,25.84,26.36,32.35,46.08,62.69,62.88,71.85。
4d:白色固体,收率70.3%,m.p.123.1℃~123.4℃;1H NMRδ:0.77(d,J=7.2Hz,3H),0.93(d,J=6.0Hz,3H),0.98~1.01(m,1H),1.21~1.32(m,3H),1.34(s,3H),1.38~1.49(m,1H),1.53~1.56(m,1H),1.67~1.72(m,2H),1.72~1.85(m,1H),1.96~2.00(m,1H),2.2~2.35(m,1H),2.53~2.58(m,1H),3.18(s,4H),3.32~3.38(m,2H),3.44~3.48(m,2H),4.19(d,J=10.4Hz,1H),5.26(s,1H);13C NMRδ:13.46,20.23,21.60,24.80,25.91,29.05,34.18,36.15,37.45,45.59,46.96,51.41,51.87,80.18,91.00,92.09,104.27。
2 结果与讨论
实验结果显示,对于饱和硫醚(1a~1c),在双氧水-丙酮-钨酸钠体系中能很好的氧化成相应的砜(2a~2c),且产物单一,柱层析纯化的收率均在95%以上。对于含三级胺的饱和硫醚(3b~3d),在相同条件下也能氧化成相应的砜,产物较单一,柱层析纯化收率均在70%以上。对于含二级胺的饱和硫醚(3a),在相同条件下并未获得相应的砜(4a),并且副产物很多,难于分离。可能的原因是二级胺比较活泼,极易被氧化。另外对于含双键的不饱和硫醚(3e),也未得到相应的砜(4e),且副产物很多,难于分离。可能的原因是双键很不稳定,极易被氧化。但对于含复杂多官能团的硫醚化合物的氧化,在我们前期研究的硫代吗啉取代的青蒿素衍生物的氧化中。实验结果表明在该条件下,过氧桥键不会被破坏,氧化产生的青蒿砜,收率也较高,柱层析收率也在70%以上。
3 结论
本报道的氧化体系(双氧水-丙酮-钨酸钠),适用于一般的饱和硫醚或者是对强酸、强碱性敏感的含硫醚键化合物的氧化。该方法较其他氧化方法具如下优点:反应条件温和、反应时间较短、操作简便、原料廉价易得、对环境友好无公害、具有很高的底物转化率和选择性。
本文的实验结果表明,该方法具有一定的应用适用性和普遍性。
[1] Prilezhaeva E N.Sulfones and sulfoxides in the total synthesis of biologically active natural compounds[J].Russian Chem Rev,2000,69(5):367-408.
[2] Costa A,Najera C,Sansano J M.Synthetic applications ofo- andp-halobenzyl sulfones as zwitterionic synthons:Preparation of ortho-substituted cinnamates and biarylac-etic acids[J].J Org Chem,2002,67:5216-5225.
[3] Lusinchi M,Stanbury T V,Zard S Z.A convergent,flexible synthesis of 1,3-dienes[J].Chem Commun,2002,(14):1532-1533.
[4] Tai Xi-shi,Yin Xian-hong,Tan Min-yu.Crystal structure andantitumor activity of tri{2-[N-(4′-methylbenzylsulfonyl)amino]ethyl}amine[J].Chinese Journal of Stroctural Chemistry,2003,22(4):411-414.
[5] Vedula M S,Pulipaka A B,Venna C,etal.New styryl sulfones as anticancer agents[J].Eur J Med Chem,2003,38(9):811-824.
[6] Silvestri R,Artico M,Regina G L,etal.Anti-HIV-1activity of pyrryl aryl sulfone(PAS)derivatives:Synthesis and SAR studies of novel esters and amides at the position 2of the pyrrole nucleus[J].Il Farmaco,2004,59(3):201-210.
[7] Foroumadi A,Asadipour A,Mirzaei M,etal.Antituberculosis agents.V.Synthesis,evaluation of in vitro antituberculosis activity and cytotoxicity of some 2-(5-nitro-2-furyl)-1,3,4-thiadiazole derivatives[J].Il Farmaco,2002,57(9):765-769.
[8] 刘学军,陈茹玉.1-(2′-烷硫基乙氧基)甲基尿嘧啶及其氧化物的合成[J].高等学校化学学报,2000,21(10):1501-1505.
[9] Angelis F D,Attorrese G,Cavicchio G,etal.Synthesis and preliminary biological evaluation of 39-substituted cephem sulfones as potential-lactamase inhibitors[J].Eur J Org Chem,2001,16:3075-3081.
[10] Iqbal N,McEwen C A,Sardari S,etal.Evaluation of methylthio-,methylsulfinyl-,and methylsulfonyl-analogs of alkanes and alkanoic acids as cardiac inotropic and antifungal agents[J].Arch Pharm Pharm Med Chem,2000,333(9):293-298.
[11] Hudlicky M.In oxidations in organic chemistry,ACS monograph ser.186[M].Washington D C,American Chemical Society,1990:252-261.
[12] Yamazaki S.Selective synthesis of sulfoxides and sulfones by methyltrioxorhenium-catalyzed oxidation of sulfides with hydrogen peroxide[J].Bull Chem Soc Jpn,1996,69(10):2955-2959.
[13] Khurana J M,Panda A K,Ray A,etal.Rapid oxidation of sulfides and sulfoxides with sodium hypochlorite[J].Org Prep Proc,1996,28(2):234-237.
[14] Barton D H R,Li W,Smith J A.Binuclear manganese complexes as catalysts in the selective and efficient oxidation of sulfides to sulfones[J].Tetrahedron Lett,1998,39(39):7055-7058.
[15] Annunziata R,Cinquini M,Colonna S J.Synthesis and stereochemistry of optically active[16O,18O]sulphones[J].J Chem Soc Perkin Trans 1,1972:2057-2058.
[16] Matsukawa T,Ohta B,Imada T.Syntheses of sulfide and sulfone compounds[J].Yakugaku Zasshi,1950,70(70):77-80.
[17] Gokel G W,Gerdes H M,Dishong D M.Sulfur heterocycles.3.Heterogeneous,phase-transfer,and acid-catalyzed potassium permanganate oxidation of sulfides to sulfones and a survey of their carbon-13nuclear magnetic resonance spectra[J].J Org Chem,1980,45(18):3634-3639.
[18] Trost B M,Curran D P.Chemoselective oxidation of sulfides to sulfones with potassium hydrogen persulfate[J].Tetrahedron Lett,1981,22(14):1287-1290.
[19] Paquetle L A,Carr R V C.Phenyl vinyl sulfone and sulfoxide[J].Org Synth Coll,1990,7:453-456.
[20] Venier C G,Squives T G,Chen Y Y,etal.Peroxytrifluoroacetic acid oxidation of sulfides to sulfoxides and sulfones[J].J Org Chem,1982,47(19):3773-3774.
[21] Sato K,Aoki M,Noyor R.A “green” route to adipic acid:Direct oxidation of cyclohexenes with 30%percent hydrogen peroxide[J].Science,1998,281(5383):1646-1647.
[22] Khurana J M,Panda A K,Ray A,etal.Rapid oxidation of sulfones and sulfoxides with sodium hypochlorite[J].Org Prep Proced Int,1996,28(2):234-237.
[23] Kutchin A V,Rubtsova A,Loginova I V.Reactions of chlorine dioxide with organic compounds.Selective oxidation of sulfides to sulfoxides by chlorine dioxide[J].Russ Chem Bull,2001,50(3):432-435.
[24] 马超,李学强,徐建,等.新型双氢青蒿素哌嗪—磺酰胺类化合物的合成、结构及生物活性[J].药学学报,2013,48(9):1430-1435.
[25] Haynes R K,Fugmann B,Stetter J,etal.Artemisone——A highly active antimalarial drug of the artemisinin class[J].Angew Chem Int Ed,2006,45(13):2082-2088.
ANovelSyntheticMethodforOxidationofSulfidetoSulfone
XU Jian1a,LI Xue-qiang1a,1b,YAO Xin-bo1a,DONG Li1a
(a.College of Chemistry and Chemical Engineering;b.Ningxia Development Center of Natural Products and Medication,1.Ningxia University,Yinchuan 750021,China)
In this paper,direct oxidation of a series of sulfides to sulfones by 30% hydrogen peroxide using sodium tungstate as the catalyst and actone as the solvent is reported.It was found that saturated hydrocarbon sulfides can be oxidized to the sulfones conveniently under this condition,benzyl sulfides and containing tertiary amine functional group saturated sulfides can be oxidized to the sulfones under this condition without affecting the benzyl and amine.The structures were confirmed by1H NMR and13C NMR.
sulfide;hydrogen peroxide;catalyst;oxidation;sulfone;synthesis
2014-01-06;
2014-04-16
国家自然科学基金资助项目(21062014);教育部科学技术研究重点项目(210237);宁夏自然科学基金资助项目(NZ0606);211工程三期建设高校重点学科建设资助项目;
徐建(1988-),男,汉族,浙江嘉兴人,硕士研究生,主要从事药物合成及天然药物的改性研究。
李学强,教授,E-mail:lixq@nxu.edu.cn
O623.83
A
1005-1511(2014)04-0526-03