APP下载

山东省典型农田土壤中重金属污染评价

2014-08-28于蕾鲁成秀刘玉真刘伏成杰民

湖北农业科学 2014年13期
关键词:农田危害重金属

于蕾 鲁成秀 刘玉真 刘伏 成杰民

摘要:以山东省基本农田土壤为研究对象,采用地积累指数法和潜在生态风险指数法分析了土壤中Cu、Zn、Pb、Cd的污染程度。由潜在生态风险指数可以看出山东省农田土壤重金属潜在生态风险级别褐土为B级,潜在生态危害程度中等;潮土为A级,潜在生态危害程度轻微;棕壤为B级,潜在生态危害程度中等。就单个元素来看,Cd元素的潜在生态危害程度最高,各元素的潜在生态危害程度为Cd>Pb>Cu>Zn。由地累积指数法可以看出Pb的风险级别最大;其次是Cu元素;Cd、Zn的污染程度相比较而言较轻,风险级别低,各元素的污染程度和风险级别为Pb>Cu>Cd>Zn。

关键词:土壤;重金属;污染评价;地积累指数法;潜在生态风险指数法

中图分类号:X53 文献标识码:A 文章编号:0439-8114(2014)13-3010-04

Assessing the Potential Ecological Risks of Heavy Metals in Farmland Soils in Shandong Province

YU Lei,LU Cheng-xiu,LIU Yu-zhen,LIU Fu,CHENG Jie-min

(College of Population Resources and Environment, Shandong Normal University, Jinan 250014, China)

Abstract: Using the basic farmland of Shandong Province served as object, the potential ecological risks of Cu and Zn, Pb, Cd in the soil was evaluated by using the index of potential ecological risk and the index of geoaccumulation.Results based on the index of potential ecological risk showed that the potential ecological risk of moisture soil was at B level, indicating that the ecological damage was moderate. The potential ecological risk of brunisolic soil were at A level, indicating that the ecological damage was not serious; while the potential ecological risk of brown earth was at B level, indicating that the ecological damage was moderate. The potential ecological risk degrees of heavy metals were ranked in order of Cd>Pb>Cu>Zn. Results based on index of geoaccumulation showed that the potential ecological risks of heavy metals were ranked in order of Pb>Cu>Zn>Cd.

Key words: soil; heavy metals; pollution assessment; index of geoaccumulation; index of potential ecologicalrisk

近年来,我国农业生产在快速发展的同时,农业生态环境也遭受着严重的污染和破坏[1]。调查表明,我国污灌区被重金属所污染的土地面积已达污灌区面积的64.8%,所以农村生态被称为“中国环保的短板”[2],分析土壤重金属元素含量对研究人为活动对土壤质量的影响以及合理开发和利用土地资源具有重要意义[3]。根据农业部对全国污灌区进行的调查表明,在我国大约140万hm2的污水灌溉区中,已经遭受重金属污染的土地面积占到污水灌区面积的64.8%,具体为轻度污染的占46.7%,中度污染的占9.7%,而严重污染的占8.4%[4]。由农田土壤及作物的重金属污染所引起的潜在健康风险引起了国内外学者的广泛关注[5-7]。对重金属进行生态风险评价的方法很多,其中常用的有地积累指数法及潜在生态风险指数法等。地积累指数法主要对沉积物或土壤中的重金属污染程度及其分级情况进行定量评价[8,9]。潜在生态风险指数法可以将生物毒性、生态危害与污染物浓度有机结合起来,从而综合反映重金属对生态环境的影响潜力[10]。本研究以山东省典型农田土壤为对象,于2009-2010年对山东省90%以上的棕壤、褐土、潮土等主要土壤类型进行调查,并在此基础上采用地累积指数法和潜在生态风险指数法对山东省典型农田土壤重金属的生态风险进行评价,从而为采用何种方法对污染土壤进行科学管理、修复、治理并防止污染进一步发展提供科学依据。

1 材料与方法

1.1 研究区概况

山东省地处黄河下游,位于东径114°36′-122°43′,北纬34°22′-38°33′之间,土地总面积15.7万km2,其中耕地面积为733.5万hm2。

山东省主要土壤类型有棕壤、褐土、潮土和盐土等土壤类型。其中褐土占全省土壤总面积的18.16%、潮土占41.10%、棕壤占30.66%,总计约90%。棕壤、褐土、潮土为山东省主要土壤类型[11],同时也是本研究农田土壤的3种类型。

1.2 样品采集与测定

按照土壤类型和作物种植品种分布及土壤肥力高、中、低分别采样,采用全球定位系统进行全省范围内的精确布设代表性采样点60个(其中褐土25个,潮土16个,棕壤19个)(图1),采集农田耕层土壤(0~20 cm),风干,磨细,过筛,备用。土壤中Cu、Zn的测定采用火焰原子吸收分光光度法[12];土壤中Pb、Cd的测定采用KI-MIBK萃取火焰原子吸收分光光度法[13]。

1.3 数据处理

1.3.1 地累积指数法 地积累指数(Index of geo-accumulation)又称Mull指数,地积累指数法考虑了元素相对于自然本底值的富集性,主要侧重于从自然角度对土壤进行评价[10] 。

计算公式如下:Igeo=log2Cn/(K·Bn)

式中,Cn为实测重金属元素的含量,mg/kg;Bn为当地沉积物中重金属元素含量的地球化学背景值,mg/kg;K为考虑到各地成岩作用不同引起背景值波动所设定的常数,K=1.5。地累积指数法分级标准见表1。

1.3.2 潜在生态风险指数法 潜在生态风险指数 (The potential ecologicalrisk index) 法则考虑了各重金属元素的毒性,更侧重于从生物和人的角度对土壤进行评价[14]。计算公式如下:

式中, RI为多种重金属元素的潜在生态风险指数; Eir为第i种重金属元素的潜在生态风险指数; Cif为第i种重金属元素的污染系数;Ci为所测样品中第i种重金属元素含量的实测值,mg/kg;Cin为第i种重金属元素含量的背景值,mg/kg;Tir为第i种重金属元素的毒性响应参数[14]。潜在生态风险指数法分级标准见表2。

2 结果与分析

2.1 地累积指数法评价结果

山东省农田土壤60个采样点的重金属污染地累积指数不同风险级别的频数及比例如表3所示。

根据地累积指数法分级标准可知,山东省典型土壤中Zn、Cu、Pb、Cd等元素多数样点在无污染至中等—强污染范围内。其中,Pb的污染最重,其中污染程度达到强—极严重污染和强污染的采样点各有1个,风险级别分别为5级和4级。另外有21.7%的采样点达中等—强污染的程度,值得重视。其次是Cu元素,有5.0%的采样点达中等—强污染的污染程度,3级风险,28.3%的采样点达中等污染程度。Cd、Zn的污染程度相对较轻,分别有40.0%和26.7%的采样点土壤达到中等污染程度,其余为无污染或轻度—中等污染程度,风险级别较低。

就不同的土壤类型来看(表4),褐土中Cu、Zn风险级别为1级,Cd、Pb为2级,各元素的风险程度依次为Pb>Cd>Cu>Zn;潮土中Cu、Cd、Zn为1级风险,Pb为2级,各元素的风险程度依次为Pb>Cu>Cd>Zn;棕壤中Cd、Zn为0级风险,Pb为1级风险,Cu的风险级别为2级,各元素的风险程度依次为Cu>Pb>Zn>Cd。

2.2 潜在生态风险指数法评价结果

研究区农田表层土壤中各元素的单项潜在生态风险指数和综合潜在生态风险指数(表5)显示,所有采样点的Cu和Zn元素的潜生态风险指数均小于40,风险级别为A,潜在生态危害程度轻微;对于Pb元素,占总数3.30%的采样点其潜在生态风险指数大于80但小于160,风险级别为C,生态危害程度强,占总数10%的采样点,其潜在生态风险指数大于40小于或等于80,潜在生态风险级别为B,潜在生态危害程度中等,其余监测点的潜在生态风险指数均小于或等于40,属A级风险级别,对生态有轻微危害,全省所有监测点平均潜在生态风险级别为A级;对于Cd元素,占总数3.30%的采样点,其潜在生态风险指数大于160,风险级别D级,潜在生态危害程度极强,A、B、C三个级别采样点所占比例分别为20.00%、36.70%和40.00%,全省平均潜在生态风险指数为82.78,大于80,属于C级,对生态具有强污染。由此可看出,Cd污染较为严重,各元素的潜在生态危害程度为Cd>Pb>Cu>Zn。

综合多元素,从综合潜在生态风险指数(表6)来看,山东省基本农田土壤中褐土和棕壤潜在生态风险级别为B级,潜在生态危害程度中等,潮土的潜在生态风险级别为A级,潜在生态危害程度轻微。

3 结论与讨论

从地累积指数可以看出,Pb的污染最重;其次是Cu元素,有5.0%的采样点达中等—强污染的程度,3级风险,28.3%的采样点达中等污染程度。Cd、Zn的污染程度相对较轻,分别有40%和26.7%的采样点土壤达到中等污染程度,其余为无污染或轻度—中等污染,风险等级较低。

根据地累积指数法,就不同的土壤类型来看,褐土中各元素的风险程度为Pb>Cd>Cu>Zn;潮土中各元素的风险程度为Pb>Cu>Cd>Zn;棕壤中各元素的风险程度为Cu>Pb>Zn>Cd。

研究区农田表层土壤中各元素的单项潜在生态风险指数和综合潜在生态风险指数显示,所有采样点的Cu和Zn元素的潜在生态风险指数均小于40,潜在风险级别为A级,潜在生态危害程度轻微,其中Zn元素的潜在生态风险指数范围为0.23~4.70,Cu元素的潜在生态风险指数范围为2.31~36.84;对于Pb元素,潜在生态风险指数范围为3.03~136.23;对于Cd元素,潜在生态风险指数范围为9.88~173.43。由此可看出,Cd元素的潜在生态危害最大,各元素的潜在生态危害程度为Cd>Pb>Cu>Zn。

两种方法都得出Zn元素的污染程度最低,但是对于其他3种元素的结果均不相同,这是各方法的要求不同造成的,具体采用何种方法应根据研究目的而定。根据潜在生态风险指数法的评价结果,Cd元素的潜在生态危害最大,但是根据地累积指数法的评价结果,只有40%的采样点土壤Cd达到中等污染程度,其余属无污染或轻度—中等污染程度,风险等级较低。在成杰民等[15]对Cu、Cd、Pb、Zn的积累速率的计算中发现,4种重金属元素中虽然Cd的积累速率非常低,但由于其本身原始含量就较低,其年变化速率却高于Cu、Zn,仅次于Pb,这从另一方面说明了Cd存在较大潜在风险。贾琳等[1]在对山东禹城农田土壤的研究中同样发现其土壤中Hg和Cd潜在生态危害指数较大,存在较大的潜在生态风险。因为禹城为典型施肥区,其畜禽养殖和污灌以及城市化进程是造成土壤中Cd含量超过原有背景值的主要因素。

农田土壤的质量与人类的生产活动密切相关,因此对于农田土壤重金属污染的危害应多从人类和生物的角度考虑,对毒性的研究要多加注意。潜在生态风险指数法不仅可以反映在一定环境中的全部污染物的影响,并且通过潜在生态危害指数的计算指出了其中应该特别注意的物质,所以对于污染的控制非常重要[16]。由此来看,采用潜在生态风险指数法对农田土壤重金属污染进行评价更适合此次的研究目的。

参考文献:

[1] 贾 琳,杨林生,欧阳竹,等.典型农业区农田土壤重金属潜在生态风险评价[J].农业环境科学学报,2009,28(11):2270-2276.

[2] 农村生态:中国环保的短板[EB/OL].http://www.chinaenvironment.com/action/Topic/ti_an/ViewNews.aspx?id=1025,2007-03-14.

[3] 罗真富,谭德军,谢洪斌,等.重庆长寿湖周边地区土壤重金属污染评价[J].湖北农业科学,2012,51(1):30-34.

[4] 陈志良,仇荣亮.重金属污染土壤的修复技术[J].环境保护,2002,29(6):21-23.

[5] BERNHARD A Z, CHE F I, MIKE J M, et al. Heavy metals in soils and crops in southeast Asia. l. Peninsular Malaysia[J].Environmental Geochemistry and Health,2004,26:343-357.

[6] MAPANDA F, MANGWAYANA E N, GILLER K E, et al. Uptake of heavy metals by vegetables irrigated using wastewater and the subsequent risks in Harare, Zimbabwe[J].Physics Chemistry of the Earth,2007,32:1399-1405.

[7] 丛 源,郑 萍,陈岳龙,等.北京市农田生态系统土壤重金属元素的生态风险评价[J].地质通报,2008,27(5):681-688.

[8] 卢 瑛,龚子同,张甘霖.南京城市土壤Pb的含量及其化学形态[J].环境科学学报,2002,22(2):156-160.

[9] 贾振邦,周 华,赵智杰,等.应用地积累指数法评价太子河沉积物中重金属污染[J].北京大学学报(自然科学版),2000,36(4):525-530.

[10] HAKANSON L. An ecological risk index for aquatic pollution control. A sediment logical approach[J]. Water Research,1980,14:975-1001.

[11] 山东省土壤肥料工作站.山东土壤[M].北京:中国农业出版社,1994.

[12] GB/T17138-1997,土壤质量铜、锌的测定 火焰原子吸收分光光度法[S].

[13] GB/T 17140-1997,土壤质量铅、镉的测定 KI-MIBK萃取火焰原子吸收分光光度法[S].

[14] 于云江,胡林凯,杨 彦,等.典型流域农田土壤重金属污染特征及生态风险评价[J].环境科学研究,2010,23(12):1523-1527.

[15] 成杰民,张丽娜.近20年山东省典型农田土壤中重金属含量变化特征及积累速率估计[J].土壤,2013,45(1):99-104.

[16] 贾振邦,梁 涛,林健枝,等.香港河流重金属污染及潜在生态危害研究[J].北京大学学报(自然科学版),1997,33(4):485-492.

农田土壤的质量与人类的生产活动密切相关,因此对于农田土壤重金属污染的危害应多从人类和生物的角度考虑,对毒性的研究要多加注意。潜在生态风险指数法不仅可以反映在一定环境中的全部污染物的影响,并且通过潜在生态危害指数的计算指出了其中应该特别注意的物质,所以对于污染的控制非常重要[16]。由此来看,采用潜在生态风险指数法对农田土壤重金属污染进行评价更适合此次的研究目的。

参考文献:

[1] 贾 琳,杨林生,欧阳竹,等.典型农业区农田土壤重金属潜在生态风险评价[J].农业环境科学学报,2009,28(11):2270-2276.

[2] 农村生态:中国环保的短板[EB/OL].http://www.chinaenvironment.com/action/Topic/ti_an/ViewNews.aspx?id=1025,2007-03-14.

[3] 罗真富,谭德军,谢洪斌,等.重庆长寿湖周边地区土壤重金属污染评价[J].湖北农业科学,2012,51(1):30-34.

[4] 陈志良,仇荣亮.重金属污染土壤的修复技术[J].环境保护,2002,29(6):21-23.

[5] BERNHARD A Z, CHE F I, MIKE J M, et al. Heavy metals in soils and crops in southeast Asia. l. Peninsular Malaysia[J].Environmental Geochemistry and Health,2004,26:343-357.

[6] MAPANDA F, MANGWAYANA E N, GILLER K E, et al. Uptake of heavy metals by vegetables irrigated using wastewater and the subsequent risks in Harare, Zimbabwe[J].Physics Chemistry of the Earth,2007,32:1399-1405.

[7] 丛 源,郑 萍,陈岳龙,等.北京市农田生态系统土壤重金属元素的生态风险评价[J].地质通报,2008,27(5):681-688.

[8] 卢 瑛,龚子同,张甘霖.南京城市土壤Pb的含量及其化学形态[J].环境科学学报,2002,22(2):156-160.

[9] 贾振邦,周 华,赵智杰,等.应用地积累指数法评价太子河沉积物中重金属污染[J].北京大学学报(自然科学版),2000,36(4):525-530.

[10] HAKANSON L. An ecological risk index for aquatic pollution control. A sediment logical approach[J]. Water Research,1980,14:975-1001.

[11] 山东省土壤肥料工作站.山东土壤[M].北京:中国农业出版社,1994.

[12] GB/T17138-1997,土壤质量铜、锌的测定 火焰原子吸收分光光度法[S].

[13] GB/T 17140-1997,土壤质量铅、镉的测定 KI-MIBK萃取火焰原子吸收分光光度法[S].

[14] 于云江,胡林凯,杨 彦,等.典型流域农田土壤重金属污染特征及生态风险评价[J].环境科学研究,2010,23(12):1523-1527.

[15] 成杰民,张丽娜.近20年山东省典型农田土壤中重金属含量变化特征及积累速率估计[J].土壤,2013,45(1):99-104.

[16] 贾振邦,梁 涛,林健枝,等.香港河流重金属污染及潜在生态危害研究[J].北京大学学报(自然科学版),1997,33(4):485-492.

农田土壤的质量与人类的生产活动密切相关,因此对于农田土壤重金属污染的危害应多从人类和生物的角度考虑,对毒性的研究要多加注意。潜在生态风险指数法不仅可以反映在一定环境中的全部污染物的影响,并且通过潜在生态危害指数的计算指出了其中应该特别注意的物质,所以对于污染的控制非常重要[16]。由此来看,采用潜在生态风险指数法对农田土壤重金属污染进行评价更适合此次的研究目的。

参考文献:

[1] 贾 琳,杨林生,欧阳竹,等.典型农业区农田土壤重金属潜在生态风险评价[J].农业环境科学学报,2009,28(11):2270-2276.

[2] 农村生态:中国环保的短板[EB/OL].http://www.chinaenvironment.com/action/Topic/ti_an/ViewNews.aspx?id=1025,2007-03-14.

[3] 罗真富,谭德军,谢洪斌,等.重庆长寿湖周边地区土壤重金属污染评价[J].湖北农业科学,2012,51(1):30-34.

[4] 陈志良,仇荣亮.重金属污染土壤的修复技术[J].环境保护,2002,29(6):21-23.

[5] BERNHARD A Z, CHE F I, MIKE J M, et al. Heavy metals in soils and crops in southeast Asia. l. Peninsular Malaysia[J].Environmental Geochemistry and Health,2004,26:343-357.

[6] MAPANDA F, MANGWAYANA E N, GILLER K E, et al. Uptake of heavy metals by vegetables irrigated using wastewater and the subsequent risks in Harare, Zimbabwe[J].Physics Chemistry of the Earth,2007,32:1399-1405.

[7] 丛 源,郑 萍,陈岳龙,等.北京市农田生态系统土壤重金属元素的生态风险评价[J].地质通报,2008,27(5):681-688.

[8] 卢 瑛,龚子同,张甘霖.南京城市土壤Pb的含量及其化学形态[J].环境科学学报,2002,22(2):156-160.

[9] 贾振邦,周 华,赵智杰,等.应用地积累指数法评价太子河沉积物中重金属污染[J].北京大学学报(自然科学版),2000,36(4):525-530.

[10] HAKANSON L. An ecological risk index for aquatic pollution control. A sediment logical approach[J]. Water Research,1980,14:975-1001.

[11] 山东省土壤肥料工作站.山东土壤[M].北京:中国农业出版社,1994.

[12] GB/T17138-1997,土壤质量铜、锌的测定 火焰原子吸收分光光度法[S].

[13] GB/T 17140-1997,土壤质量铅、镉的测定 KI-MIBK萃取火焰原子吸收分光光度法[S].

[14] 于云江,胡林凯,杨 彦,等.典型流域农田土壤重金属污染特征及生态风险评价[J].环境科学研究,2010,23(12):1523-1527.

[15] 成杰民,张丽娜.近20年山东省典型农田土壤中重金属含量变化特征及积累速率估计[J].土壤,2013,45(1):99-104.

[16] 贾振邦,梁 涛,林健枝,等.香港河流重金属污染及潜在生态危害研究[J].北京大学学报(自然科学版),1997,33(4):485-492.

猜你喜欢

农田危害重金属
降低烧烤带来的危害
药+酒 危害大
重金属对膨润土膨胀性的影响
测定不同产地宽筋藤中5种重金属
酗酒的危害
农田创意秀
农田搞养殖需办哪些证
ICP-AES、ICP-MS测定水中重金属的对比研究
农田制作所
再生水回灌中DOM对重金属迁移与保留问题研究