植物Cu,Zn—SOD分子调控机理研究进展
2014-08-12姚婕赵艳玲
姚婕 赵艳玲
摘 要 铜/锌超氧化物歧化酶(Cu,Zn-SOD)能清除植物体内有害的活性氧(ROS),参与植株遭受逆境胁迫时的应激反应等过程。铜分子伴侣(CCS)可以传递铜离子到Cu,Zn-SOD当中,并将其激活生成有活性的酶分子,依赖CCS协助是Cu,Zn-SOD主要的激活途径。植物在铜缺乏的环境下会诱导启动子结合蛋白(SPL7)和小RNA398(miR398)的表达,miR398通过降解编码Cu,Zn-SOD的mRNA抑制Cu,Zn-SOD的生成,从而调控植物体内铜平衡。本文主要对植物Cu,Zn-SOD激活和调控途径进行综述。
关键词 Cu,Zn-SOD ;CCS ;miR398 ;SPL7 ;调控途径
分类号 Q943.2
Abstract Superoxide dismutases (Cu,Zn-SODs) are important antioxidant enzymes that catalyze the disproportionation of superoxide anion to oxygen and hydrogen peroxide to guard cells against superoxide toxicity. The major pathway for activation of copper/zinc SOD (CSD) requiring the CCS copper chaperone to insert copper and activate SOD1 through oxidation of an intramolecular disulfide. Expression of miR398 and SPL7 (for SQUAMOSA promoter binding protein-like7) are induced in response to copper deficiency and miR398 is involved in the degradation of mRNAs encoding copper/zinc superoxide dismutase. This paper reviewed on plant Cu, Zn-SOD activation and regulatory pathways.
Keywords Cu,Zn-SOD ; CCS ; miR398 ; SPL7 ; regulatory pathways
1972年,美国Richardson实验室首次获得了可供X射线晶体结构分析的Cu,Zn-SOD(CSD)晶体[1]。1982年,JA Tainer等从牛血红蛋白中得到了由SOD1基因编码的Cu,Zn-SOD的三维结构,并建立了以其结构为基础的酶催化机制和快速反应机制[2]。在Cu,Zn-SOD成熟过程中,铜离子的获得是关键步骤,热力学分析显示,Cu,Zn-SOD利用铜结合位点逐渐增强的亲和力,才实现了铜离子在含铜蛋白之间的传递[3]。铜分子伴侣(copper chaperone for SOD1, CCS)可以传递铜离子到Cu,Zn-SOD当中,并将其激活生成有活性的酶分子。第一个描述酵母和人类CCS的是Valentine & Gralla[4]1997年发表于Science的一篇文章,此后,CCS就被广泛发现存在于真核生物中,并和Cu/Zn-SOD一起表达。目前,拟南芥、水稻、玉米、大豆、土豆、龙眼[5]等植物的CCS已被克隆。
最近的研究表明,Cu,Zn-SOD的表达受到miRNA的调控。植物在铜缺乏的环境下会诱导生成启动子结合蛋白(SQUAMOSA promoter binding protein-like7,SPL7),SPL7直接和miR398启动子结合并激活其表达,miR398通过降解编码Cu,Zn-SOD的mRNA从而抑制了Cu,Zn-SOD的生成,此时铜离子则参与到植物体内另一个重要的含铜蛋白-质体蓝素的合成过程当中,保证了植物的正常生长[6]。
1 Cu,Zn-SOD激活途径
1.1 CCS的研究进展
分子进化分析显示,CCS的中心结构域和Cu,Zn-SOD高度同源[7],其N端结构域对激活Cu,Zn-SOD起决定性作用[8]。CCS基因启动子区域包含了与植物生长素和应激响应有关的顺势作用元件,会被植物生长素,赤霉素,果糖,蔗糖,葡萄糖等诱导表达。不同植物组织中的CCS表达量也有所差异,Trindade[9]将马铃薯CCS启动子融合荧光色素基因,发现CCS在皮质区,如茎、匍匐枝和块茎表达水平最高,根部和花表达水平较低。植物在衰老状态下,CCS的表达量也会随之增加[10]。
Cohu等[11]发现,当拟南芥CCS无效突变后,Cu,Zn-SOD活性会随之丧失,这说明拟南芥细胞质和叶绿体中的Cu,Zn-SOD需要CCS才能激活。细胞X连锁凋亡抑制蛋白(X-linked inhibitor of apoptosis,XIAP)也需要CCS传递铜离子,XIAP的环指结构包含E3泛素连接酶活性,通过泛素蛋白酶体途径可促进XIAP自身或与其相互作用的蛋白分子泛素化而降解,因此XIAP被认为是通过对含铜蛋白的降解从而调控铜离子平衡的。有趣的是CCS与XIAP的互相作用而导致的泛素化却能增强CCS对Cu,Zn-SOD的活性而不是自身蛋白酶体的降解[12]。这些研究表明CCS在调控植物体内铜离子平衡过程中发挥特殊作用。
1.2 依赖CCS的CSD激活途径
近几年来,关于依赖CCS激活Cu,Zn-SOD的机制已被阐明。SOD1前体多肽内由于第144位上含有一个脯氨酸(pro),这个结构阻止了5.5 处两个半胱氨酸(cys)分子内二硫键的形成,所以SOD1前体多肽内并没有二硫键[13]。锌离子在铜离子与SOD1结合之前首先进入金属结合位点。在氧胁迫条件下,SOD1前体比成熟的Cu,Zn-SOD更容易形成有害的多聚体。锌离子插入后,SOD1构象发生变化,形成了适合Cu-CCS复合体结合的状态。CCS结构域III通过静电识别捕获Cu1+并和Cys残基连接。之后CCS构象转变,提高了和SOD1之间的互相作用。接下来Cu-CCS和SOD1形成了二聚体复合物,氧气攻击被CCS-SOD1复合物捕获的Cu1+,伴随氧化还原反应的发生Cu1+插入到SOD1当中,氧气的存在还促进了硫醇基的氧化,最后引起SOD1中Cys57和CCS中与Cu1+离子连接的Cys229分子间二硫键的形成。Cu1+进入SOD1金属位点后诱导Cys残基周围分子构象的改变,促进了分子间二硫氧化物到分子内的二硫氧化物的转变。经过快速重排CSD1分子内二硫键形成,然后活性酶分子被释放[13-14](图1)。endprint
迄今为止,所有检测的Cu,Zn-SOD每个亚基都含有一个保守的二硫键,二硫键的形成过程本来很慢,Cu-CCS复合体的结合加速了这一过程[13]。一旦形成,二硫键能保持很高的稳定性,甚至在细胞质中存在大量还原剂的情况下也不会发生断裂[15]。在SOD1成熟过程中,如果铜离子插入之前就形成二硫键的话,酶就不能被Cu-CCS激活,保守的二硫键在CCS协助下为铜离子正确插入金属活性位点提供支持并引导底物进入酶活性中心,对SOD1的激活和催化起关键作用[16]。但在真核细胞中,还原环境下的二硫键是如何形成且能保持高稳定性以及其他功能还不清楚,活性SOD1和CCS晶体显示出的分子间的二硫铰链作用是否是结晶化的结果也不得而知。除了二硫键形成之外,初期SOD1多肽必需经过3种其他的修饰,即铜、锌离子的获得和二聚化。每种修饰过程都会使酶发生严格的构象改变,决定了酶分子的最终形成。虽然内质网有专门的机制来氧化蛋白质折叠,很多证据表明SOD1并不是在内质网上折叠形成的[17]。当CCS过量表达时,会加快SOD1形成有害的多聚体,在人体内会导致肌萎缩侧索硬化症的发生[18-19]。
1.3 不依赖CCS的CSD激活途径
在早期的大部分研究中,CCS突变菌株中的Cu,Zn-SOD由于缺乏铜离子和分子内二硫键而失去活性,所以CCS一直被认为是激活Cu,Zn-SOD的唯一途径。然而,2000年Wong[20]发现一只CCS变异的白鼠体内依然存在少量的Cu,Zn-SOD活性。此外,线虫CSD的激活就完全不需要CCS[21],不依赖CCS的激活途径在老鼠、拟南芥和蜘蛛中陆续被发现,且适用于酵母表达体系[22],由此证明了CCS并不是唯一的CSD激活途径。
目前对不依赖CCS激活途径机制还不太清楚,但可以确定,一个未知因子和谷胱甘肽(GSH)一起参与到此途径当中[23]。由此提出了两种模型(图2)。第一种模型:铜离子从Cu-GSH复合物传递到Cu,Zn-SOD,中间需要未知因子参与,未知因子起蛋白质支架的作用,提供Cu,Zn-SOD和Cu-GSH结合的平台。第二种模型:铜离子从Cu-GSH传递到未知因子,然后再通过未知因子传递到Cu,Zn-SOD,这里的未知因子起铜离子的传递作用,并可以建立铜离子和Cu,Zn-SOD的连接[24]。不管是哪种模型,Cu,Zn-SOD和未知因子间的相互作用都是非常重要的。人类Cu,Zn-SOD C-末端144位的pro被推测是Cu-GSH和Cu,Zn-SOD的连接位点[25],由此推测第一种模型的可能性更大。
1.4 两种激活途径之间的关系
迄今为止,Cu,Zn-SOD的两条激活途径均已被证实。这两条激活途径的不同点在于:首先依赖CCS激活的Cu,Zn-SOD第144位上有一个Pro,这个空间构象阻止了5.5 处两个Cys分子内二硫键的形成,而Cu-CCS的存在可以克服这一不利因素;其次依赖CCS激活途径需要分子氧参与,不需要CCS的激活途径,却可以在含氧量很低乃至无氧条件下激活Cu,Zn-SOD[13-15]。研究发现,在酵母细胞中,Cu,Zn-SOD的二硫键是被Cu-CCS复合体氧化生成的[13],但在不依赖CCS激活途径的线虫中,二硫键却能一直保持氧化状态[15]。因此,如果细胞处于还原环境且Cu,Zn-SOD二硫键氧化趋势很低时,就可能需要CCS的协助。
拟南芥细胞3种Cu,Zn-SOD对激活途径有不同的偏好,主要取决于其所处的亚细胞环境,细胞质中的CSD1,有64%依赖CCS激活,36%不依赖CCS;叶绿体中的CSD2完全依赖于CCS才能被激活;过氧化物酶体中的CSD3则完全不需要CCS的协助[23]。由此推测,真核生物根据自己的生境会选择不同的Cu,Zn-SOD激活途径,一些生物体必需依赖CCS,而另一些则不需要,但大多数真核生物都同时存在这两种激活途径,且发现以依赖CCS的激活途径为主。
2 Cu,Zn-SOD调控机制
含铜蛋白如CSD1、CSD2、CCS、质体蓝素等都能通过miRNA来调控,由启动子结合蛋白SPL7诱导表达的miR398可以阻碍CSD1、CSD2和CCS mRNA的转录[26]。miR398不仅被环境中高浓度铜所抑制,还能被高浓度蔗糖所诱导[27]。在低铜环境下,SPL7通过诱导miR398从而抑制了Cu,Zn-SOD的生成,SPL7还可以激活铁超氧化物歧化酶(Fe-SOD,FSD1)的表达,Cu,Zn-SOD的功能将会被FSD1所取代并参与到植物氧化应激反应过程当中[6]。
2.1 microRNA应对环境胁迫的调控者
植物在环境胁迫条件下的生长发育会受到miRNA的调控,miRNA参与植物应激反应并能调节植物生长素和信号传导等过程。在拟南芥中miR398编码3个基因:miR398a、miR398b、miR398c。miR398b和miR398c序列相似,而miR398a 3'末端的核苷酸跟它们不同。miR398b和miR398c的表达量比miR398a高的多,且显示出了更强的调控能力[28]。miR398的4个目标蛋白分别是:细胞质CSD1、叶绿体CSD2、线粒体细胞色素氧化酶亚基COX5b-1和铜分子伴侣CCS。通过调控这些靶基因,miR398参与了一系列的环境胁迫响应过程,其中包括氧化应激、盐应激、脱落酸信号传导以及细菌性病原体侵染后的应激过程等[29]。
高浓度的蔗糖通过抑制miR398的表达从而降低植物体内铜离子的积累量,这表明在植物细胞内蔗糖的信号转导和含铜蛋白的积累有一定联系,启动子结合蛋白SPL7是诱导miR398的关键因子,但是这种通过蔗糖调控植物体内铜离子含量的响应过程并不完全由SPL7所控制[30]。除了降解转录产物之外,一些miRNA如miR398、miR172和miR156在正常情况下可以通过翻译抑制来调控目标蛋白[31],但植物在逆境中是用这两种调控机制还是是偏爱其中某一种尚不清楚。endprint
由于受到氧化胁迫,作为miRNA转录因子的SPL7失活可能是导致miRNA转录受到抑制的原因,miRNA含量会在几个小时之内消失[32],核糖核酸外切酶也会在miRNA转录后将其降解,这些说明miRNA的胁迫响应可能在转录水平或转录后水平被调控。是由于胁迫诱导miRNA表达量下降还是由于其自身的降解能力下降导致胁迫响应,目前尚不清楚。研究胁迫响应miRNA与其目标基因表达量的关系将为深入了解miRNA网络的调控过程提供依据。 2.2 转录因子SPL7通过诱导miR398调控SOD的表达
启动子结合蛋白SPL7是一种保守的铜离子响应转录因子,和绿藻中的Crr1(Copper Response Regulator)属于同一家族[33],研究发现,SPL7是Cu,Zn-SOD受铜离子影响的主要调控因子[6]。在拟南芥中,启动子结合蛋白SPL7在铜离子缺乏时被激活表达,其SBP(for SQUAMOSA promoter binding protein,SBP) 结构域可以直接和miR398启动子的GTAC序列结合并激活miR398的转录,但Fe-SOD启动子也含有GTAC序列并能被SPL7激活[6,34]。miR398可以阻碍CSD1、CSD2和CCS的mRNA的转录[26-27],因此当铜离子成为限制因素时,SPL7将正调控FSD1而负调控CSD1和CSD2的表达。另外,SPL7也参与铜离子转运蛋白和铜分子伴侣CCS的调控[26]。
但是,Dugas和Bartel[27]发现,将拟南芥移栽到含有蔗糖的培养基上会促进miR398的表达而造成CSD1和CSD2含量下降,因此在蔗糖存在下,CSD1和CSD2的转录不受铜离子含量的影响,但Fe-SOD表达量却恒定,这表明蔗糖环境中,并不是通过SPL7而是其他未知因子来调控miR398的表达。Ren[30]等发现,在拟南芥细胞内,不管SPL7是否存在,蔗糖都能通过调控miRNAs的表达从而影响铜离子的积累量,如果将CSD1和CSD2 mRNA的miR398识别位点改变,这些突变mRNA甚至在miR398表达量很高的情况下都能成功转录,然而CSD1和CSD2的表达量却依然受到铜缺乏的影响,这说明miR398并不是唯一影响CSD1和CSD2转录的因素[27-32]。不过这种现象还可以解释为,CSD1和CSD2含量的积累需要铜离子起稳定作用,而在铜缺乏条件下传递铜离子的CCS蛋白会被miR398负调控。
3 讨论
Cu,Zn-SOD的研究起步较早,对其蛋白结构、功能和分类的研究也比较深入。关于Cu,Zn-SOD的激活途径和分子调控机理也是研究较多的领域之一,但尚有诸多未知的机理有待深入探究。首先,Cu,Zn-SOD与多种抗逆性有关,目前研究限于低温、干旱、高盐[35-37]等逆境,针对不同的逆境Cu/Zn-SOD的调控机理是否存在差异有待进一步系统研究。例如拟南芥Cu,Zn-SOD在蔗糖存在下除了SPL7以外,还存在一种未知蛋白在SPL7缺失的情况下调控植物体内的铜离子,而受铜离子影响的Cu,Zn-SOD是否也能被这种未知蛋白所调控需要进一步的验证;另外,蔗糖胁迫中miR398也并不是唯一影响CSD1和CSD2转录的因素,说明逆境条件下CSD的调控存在多种可能。其次,Cu,Zn-SOD的激活途径有两条,不同的真核生物选择这两条激活途径的机理尚不清晰,非CCS激活途径研究较少,尚需大量的科学研究揭示该未知因子以及未知因子与谷胱甘肽的作用机理。这些基础研究的数据将明晰植物的抗逆能力与Cu/Zn-SOD的关系,并利用这些结论创制具有良好的耐逆能力的植物新品系。
参考文献
[1] Richardson D C, Bier C J, Richardson J S. Two crystal forms of bovine superoxide dismutase[J]. J Biol Chem. 1972, 247(19): 6 368-6 369.
[2] Tainer J A, Getzoff E D, Beem K M, et al. Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase[J]. J Mol Biol, 1982, 160(2): 181-217.
[3] Banci L, Bertini I, Ciofi B S, et al. Affinity 278 gradients drive copper to cellular destinations[J]. Nature,2010,465(7928): 645-648.
[4] Valentine S J, Gralla E B. Delivering copper inside yeast and human cells[J]. Science, 1997, 278(5339): 817-818.
[5] 林玉玲,赖钟雄. 龙眼胚性愈伤组织Cu/Zn-SOD分子伴侣基因CCS的克隆及其在体胚发生过程中的表达分析[J].应用与环境生物学报,2012,18(3):351-358.
[6] Yamasaki H, Hayashi M, Fukazawa M. SQUAMOSA promoter binding protein-Like7 is a central regulator for copper homeostasis in Arabidopsis[[J]. The Plant Cell, 2009, 21(1): 347-361.
[7] Fukuhara R, Kageyama T. Structure, gene expression, and evolution of primate copper chaperone forsuperoxide dismutase[J]. Gene, 2013, 516(1):69-75.endprint
[8] Chu C C, Lee W C, Guo W Y, et al. A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis[J]. Plant Physiol, 2005, 139(1): 425-36.
[9] Trindade L M, Horvath B M, Bergervoet M J, et al. Isolation of a gene encoding a copper chaperone for the copper/zinc superoxide dismutase and characterization of its promoter in potato[J]. Plant Physiol, 2003, 133(2): 618-29.
[10] Abdel-Ghany S E, Burkhead J L, Gogolin K A. AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7[J]. FEBS Letters, 2005, 579(11): 2 307-2 312.
[11] Cohu C M, Abdel-Ghany S E, Gogolin Reyndds K A, et al. Copper delivery by the copper chaperone for chloroplast and cytosolic copper/zinc- superoxide dismutases: regulation and unexpected phenotypes in an Arabidopsis mutant[J]. Mol Plant, 2009, 2(6): 1 336-1 350.
[12] Brady G F, Galba′n s, Liu X W. Regulation of the copper chaperone CCS by XIAP-Mediated ubiquitination[J]. Mol. Cell. Biochem, 2010, 30(8): 1 923-1 936.
[13] Furukawa Y, Torres A S, O'Halloran T V. Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS[J]. J EMBO, 2004, 23(14): 2 872-2 881.
[14] Jeffry M, Leitch, Priscilla J, et al. The Right to choose: multiple pathways for activating copper,zinc superoxide dismutase[J]. Bio Chem, 2009, 284(37): 24 679-24 683.
[15] Leitch J M, Jensen L T, Bouldin S D, et al. Activation of Cu,Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS[J]. Biol. Chem, 2009, 284(33): 21 863-21 871.
[16] Fisher C L, Cabelli D E, Tainer J A, et al. The role of arginine 143 in the electrostatics and mechanism of Cu,Zn superoxide dismutase: computational and experimental evaluation by mutational analysis[J] .Proteins, 1994, 19(1): 24-34.
[17] Lindenau J, Noack H, Possel H, et al. Cellular distribution of superoxide dismutases in the rat CNS[J]. Glia, 2000, 29(1): 25-34.
[18] Kim H K, Chung Y W, Chock P B, et al. Effect of CCS on the accumulation of FALS SOD1 mutant-containing aggregates and on mitochondrialtranslocation of SOD1 mutants: implication of a free radical hypothesis[J]. Arch Biochem Biophys, 2011, 509(2): 177-185.
[19] Reddehase S, Grumbt B, Neupert W, et al. The disulfide relay system of mitochondria is required for the biogenesis of mitochondrial Ccs1 and Sod1[J]. Mol Biol, 2009, 385(2): 331-338.
[20] Wong P C, Waggoner D, Subramaniam J R, et al. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase[J]. Proc Natl Acad Sci USA, 2000, 97(16): 2 886-2 891.endprint
[21] Jensen L T, Culotta V C. Activation of CuZn superoxide dismutases from caenorhabditis elegans does not require the copper chaperone CCS[J]. Biol Chem, 2005, 280: 41 373-41 379.
[22] Sea K W, Sheng Y, Lelie H L, et al. Yeast copper-zinc superoxide dismutase can be activated in the absence of its copper chaperone[J]. Biol Inorg Chem, 2013, 18(8): 985-992.
[23] Huang C H, Kuo W Y, Weiss C, et al. Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis[J]. Plant Physiol, 2012, 158(2):737-746.
[24] Huang C H, Kuo W Y, Jinn T L.Models for the mechanism for activating copper-zinc superoxide dismutase in the absence of the CCS Cu chaperone in Arabidopsis[J]. Plant Signal Behav, 2012, 7(3): 428-430.
[25] Carroll M C, Girouard J B, Ulloa J L, et al. Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone[J]. Proc Natl Acad Sci USA. 2004, 101(16): 5 964-5 969.
[26] Beauclair L, Yu A, Bouche N. microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis[J].The Plant Journal, 2010, 62(3): 454-462.
[27] Dugas D V,Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/ Zn superoxide dismutases[J]. Plant Mol. Biol, 2008, 67(4): 403-417.
[28] Yamasaki H, Abdel-Ghany S E, et al. Regulation of copper homeostasis by micro-RNA in Arabidopsis[J]. Biol. Chem, 2007, 282(22): 16 369-16 378.
[29] Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis[J]. Planta, 2009, 229(4): 1 009-1 014.
[30] Ren L, Tang G. Identification of sucrose-responsive microRNAs reveals sucrose-regulated copper accumulations in an SPL7-dependent and independent manner in Arabidopsis thaliana[J]. Plant Sci. 2012(187): 59-68.
[31] Brodersen P. Voinnet O. Revisiting the principles of microRNA target recognition and mode of action[J]. Nat Rev Mol Cell Biol, 2009, 10(2): 141-148.
[32] Sunkar R, Kapoor A, Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J]. Plant Cell, 2006, 18(8): 2 051-2 065.
[33] Kropat J, Tottey S, Birkenbihl RP, et al. A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element[J]. Proc Natl Acad Sci USA , 2005, 102(51): 18 730-18 735.
[34] Burkhead J L, Reynolds K A, et al. Copper homeostasis[J]. New Phytol, 2009(182): 799-816.
[35] Sales C R, Ribeiro R V, Silveira J A, et al. Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature[J]. Plant Physiol Biochem.2013(73): 326-336.
[36] 叶亚新,金 进,秦 粉,等. 低温胁迫对小麦、玉米、萝卜幼苗超氧化物歧化酶活性的影响[J]. 中国农学通报. 2009,25(23):244-248.
[37] 张海娜,李小娟,李存东,等. 过量表达小麦超氧化物歧化酶(SOD)基因对烟草耐盐能力的影响[J]. 作物学报,2008,34(8):1 403-1 408.endprint
[21] Jensen L T, Culotta V C. Activation of CuZn superoxide dismutases from caenorhabditis elegans does not require the copper chaperone CCS[J]. Biol Chem, 2005, 280: 41 373-41 379.
[22] Sea K W, Sheng Y, Lelie H L, et al. Yeast copper-zinc superoxide dismutase can be activated in the absence of its copper chaperone[J]. Biol Inorg Chem, 2013, 18(8): 985-992.
[23] Huang C H, Kuo W Y, Weiss C, et al. Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis[J]. Plant Physiol, 2012, 158(2):737-746.
[24] Huang C H, Kuo W Y, Jinn T L.Models for the mechanism for activating copper-zinc superoxide dismutase in the absence of the CCS Cu chaperone in Arabidopsis[J]. Plant Signal Behav, 2012, 7(3): 428-430.
[25] Carroll M C, Girouard J B, Ulloa J L, et al. Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone[J]. Proc Natl Acad Sci USA. 2004, 101(16): 5 964-5 969.
[26] Beauclair L, Yu A, Bouche N. microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis[J].The Plant Journal, 2010, 62(3): 454-462.
[27] Dugas D V,Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/ Zn superoxide dismutases[J]. Plant Mol. Biol, 2008, 67(4): 403-417.
[28] Yamasaki H, Abdel-Ghany S E, et al. Regulation of copper homeostasis by micro-RNA in Arabidopsis[J]. Biol. Chem, 2007, 282(22): 16 369-16 378.
[29] Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis[J]. Planta, 2009, 229(4): 1 009-1 014.
[30] Ren L, Tang G. Identification of sucrose-responsive microRNAs reveals sucrose-regulated copper accumulations in an SPL7-dependent and independent manner in Arabidopsis thaliana[J]. Plant Sci. 2012(187): 59-68.
[31] Brodersen P. Voinnet O. Revisiting the principles of microRNA target recognition and mode of action[J]. Nat Rev Mol Cell Biol, 2009, 10(2): 141-148.
[32] Sunkar R, Kapoor A, Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J]. Plant Cell, 2006, 18(8): 2 051-2 065.
[33] Kropat J, Tottey S, Birkenbihl RP, et al. A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element[J]. Proc Natl Acad Sci USA , 2005, 102(51): 18 730-18 735.
[34] Burkhead J L, Reynolds K A, et al. Copper homeostasis[J]. New Phytol, 2009(182): 799-816.
[35] Sales C R, Ribeiro R V, Silveira J A, et al. Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature[J]. Plant Physiol Biochem.2013(73): 326-336.
[36] 叶亚新,金 进,秦 粉,等. 低温胁迫对小麦、玉米、萝卜幼苗超氧化物歧化酶活性的影响[J]. 中国农学通报. 2009,25(23):244-248.
[37] 张海娜,李小娟,李存东,等. 过量表达小麦超氧化物歧化酶(SOD)基因对烟草耐盐能力的影响[J]. 作物学报,2008,34(8):1 403-1 408.endprint
[21] Jensen L T, Culotta V C. Activation of CuZn superoxide dismutases from caenorhabditis elegans does not require the copper chaperone CCS[J]. Biol Chem, 2005, 280: 41 373-41 379.
[22] Sea K W, Sheng Y, Lelie H L, et al. Yeast copper-zinc superoxide dismutase can be activated in the absence of its copper chaperone[J]. Biol Inorg Chem, 2013, 18(8): 985-992.
[23] Huang C H, Kuo W Y, Weiss C, et al. Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis[J]. Plant Physiol, 2012, 158(2):737-746.
[24] Huang C H, Kuo W Y, Jinn T L.Models for the mechanism for activating copper-zinc superoxide dismutase in the absence of the CCS Cu chaperone in Arabidopsis[J]. Plant Signal Behav, 2012, 7(3): 428-430.
[25] Carroll M C, Girouard J B, Ulloa J L, et al. Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone[J]. Proc Natl Acad Sci USA. 2004, 101(16): 5 964-5 969.
[26] Beauclair L, Yu A, Bouche N. microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis[J].The Plant Journal, 2010, 62(3): 454-462.
[27] Dugas D V,Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/ Zn superoxide dismutases[J]. Plant Mol. Biol, 2008, 67(4): 403-417.
[28] Yamasaki H, Abdel-Ghany S E, et al. Regulation of copper homeostasis by micro-RNA in Arabidopsis[J]. Biol. Chem, 2007, 282(22): 16 369-16 378.
[29] Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis[J]. Planta, 2009, 229(4): 1 009-1 014.
[30] Ren L, Tang G. Identification of sucrose-responsive microRNAs reveals sucrose-regulated copper accumulations in an SPL7-dependent and independent manner in Arabidopsis thaliana[J]. Plant Sci. 2012(187): 59-68.
[31] Brodersen P. Voinnet O. Revisiting the principles of microRNA target recognition and mode of action[J]. Nat Rev Mol Cell Biol, 2009, 10(2): 141-148.
[32] Sunkar R, Kapoor A, Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J]. Plant Cell, 2006, 18(8): 2 051-2 065.
[33] Kropat J, Tottey S, Birkenbihl RP, et al. A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element[J]. Proc Natl Acad Sci USA , 2005, 102(51): 18 730-18 735.
[34] Burkhead J L, Reynolds K A, et al. Copper homeostasis[J]. New Phytol, 2009(182): 799-816.
[35] Sales C R, Ribeiro R V, Silveira J A, et al. Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature[J]. Plant Physiol Biochem.2013(73): 326-336.
[36] 叶亚新,金 进,秦 粉,等. 低温胁迫对小麦、玉米、萝卜幼苗超氧化物歧化酶活性的影响[J]. 中国农学通报. 2009,25(23):244-248.
[37] 张海娜,李小娟,李存东,等. 过量表达小麦超氧化物歧化酶(SOD)基因对烟草耐盐能力的影响[J]. 作物学报,2008,34(8):1 403-1 408.endprint