APP下载

宇宙大爆炸的50年

2014-08-05赵洋

科幻世界 2014年5期
关键词:星系恒星宇宙

赵洋

2014年3月17日,美国科学家宣布他们首次探测到了宇宙大爆炸后形成的引力波,这一发现对了解宇宙如何诞生具有里程碑式的意义。曾在1980年提出宇宙暴涨概念的理论物理学家、麻省理工学院教授艾伦·古思称,这一最新研究“绝对有资格获得诺贝尔奖”——它有助于证明宇宙诞生于138亿年前的一次大爆炸。

最早的宇宙学说

宇宙大爆炸学说是目前公认的宇宙起源的“标准学说”。人类对于宇宙从何而来的好奇心古已有之。从东方的盘古开天地到西方的上帝七天创造世界,各民族关于宇宙起源的传说如出一辙,即都是由超自然的力量“建造”了宇宙。

不单是对宇宙起源的猜测相似,各民族对宇宙结构的最初看法也是惊人的相同。这从三个文明古国对宇宙结构的猜测就可以看出:

古巴比伦人生活于四千年前的两河流域,他们认为宇宙是一个密封的箱子或小房间,大地是它的底板,底板中央矗立着冰雪覆盖的区域,幼发拉底河就发源于这些区域中间。大地四周有水环绕,水之外还有天山,以支撑蔚蓝色的天穹。

古埃及人在尼罗河两岸生活,他们心目中的宇宙大体上和古巴比伦人相仿。他们认为宇宙是一个方盒子,南北的长度较长,底面是凹下去的,埃及就处于凹陷的中心。天是一块平坦的或弧形的天花板,四方有四根天柱,即支撑的山峰,星星是用链条悬挂在天上的灯。在方盒子的边沿,环绕着一条大河,河上有一艘船载着太阳往来。尼罗河是这条河的支流。显然,这个宇宙模型受当地地貌的影响很深。

中国古代占主导地位的宇宙模型是“浑天说”。发明地动仪的张衡是它的主要拥护者。“浑天说”认为,天好像一个鸡蛋壳笼罩在一片汪洋之上,陆地似蛋黄,浮在蛋清般的水中,恰好位于天的正下方。但是,蛋壳和蛋黄的比喻只是为了说明天与地的位置关系,古人可没有把脚下的大地看成是球形的。尽管唐代天文学家一行在大地测量中曾发现用“地平说”解释不了的事实,可惜他没敢怀疑“浑天说”。

从上面的例子可以看出,古人并不区分天地与宇宙,他们以为日月星辰是天空的一部分。比如,他们都认为大地是平坦静止的,天空由极高的山峰支撑着,日月星辰在天空中运动。这种天地宇宙观是人类早期游牧生活的反映,那时人们住在帐篷里,他们想当然地认为宇宙的结构和帐篷是一样的。在这里,人们按照自己的居所造出了心目中的宇宙,就好像按照自己的形象创造神的形象一样。

但是,这种地外有水、水外罩天的“地平说”是先天不足的。古人最搞不懂的是:大地的外面全是汪洋,那么太阳落山后岂不是要沉到水中熄灭了吗?再说,太阳昨天从西方落下,怎么今天早上又从东方升起?这一夜太阳到哪里去了?

中国古代还有人曾尝试用阴阳五行相生相克的观念解释这个问题,但并不成功。毕竟这个宇宙模型与现实的差距太远了。

“大爆炸”是个贬义词

自从哥白尼提出“日心说”以来,几代天文学家不断更新望远镜和天文理论,逐渐认识到不但太阳不是宇宙的中心,就连银河系也不是。银河系在本超星系团中也不过是个“小兄弟”,宇宙很可能没有中心。但宇宙总该有个开始,它始于何时呢?

爱因斯坦在20世纪初提出的狭义相对论和广义相对论,使人类对时间和空间本质的认识又前进了一大步。天文学家意识到,要想研究大尺度的天文现象,必须借助相对论这个工具。1927年,比利时天文学家勒梅特(此人同时也是天主教神父)发表了爱因斯坦引力场方程的一个严格解,并由此指出宇宙是在膨胀的。

不过,勒梅特只是在理论上指出了宇宙膨胀的可能性,证实宇宙膨胀的人是美国天文学家爱德温·哈勃。1925年,哈勃根据河外星系的形状对其分类,得出一个重要结论:星系看起来都在远离地球而去,且距离越远,远离速度越快。哈勃于1929年发表的这个初步结论后来被更多观测所证实,成为人们公认的“哈勃定律”(也叫“红移定律”)。

哈勃定律的重要意义在于,它表明宇宙并非如天文界以前所认为的那样是静止的。它显示出众多的河外星系就像一个膨胀气球上的斑点,随着膨胀而互相远离,而且这个过程已有100亿年至200亿年的历史。

1932年,勒梅特提出假说:既然宇宙一直在膨胀,那么反推回去,宇宙最初应该聚集在一个密度和温度极高的“原始原子”(也叫“宇宙蛋”)中,后来它发生四散的爆炸,才形成了今天的宇宙。勒梅特的成果一开始并未受到关注,直到更有名望的英国物理学家爱丁顿重视了这一成果,宇宙起源于“宇宙蛋”的假说才引起科学家们的普遍关注。

“大爆炸”是从英文名称Big Bang翻译过来的,直译的话应为“嘭的一大声”。1949年3月,英国天文学家弗雷德·霍伊尔参加了BBC的一次广播节目,在节目中,霍伊尔将宇宙从一个点爆炸产生的理论戏称为“这个大爆炸的观点”。这就是“大爆炸”一词的来源。其实,霍伊尔并不支持大爆炸理论。他是与大爆炸对立的宇宙学模型——稳恒态理论的倡导者,因为对大爆炸宇宙学说怀有敌意,所以他才起了这个颇有嘲讽之意的名字。但后来的观测事实却逐步确立了大爆炸宇宙学说的主导地位,犹如达尔文学说在生物学中的地位一样。

稳态还是动态?

尽管人们知道世间的一切都在运动中,只是到了哈勃发现红移定律后,动态宇宙的观念才进入人类的考量。人们甚至从来没有想过宇宙也会演化,即便牛顿和爱因斯坦也都主张宇宙是稳定的。

根据牛顿的万有引力定律,宇宙中的一切物质都会相互吸引。如果真是这样,所有的星球都会因相互吸引而聚在一起,不再有稳定的宇宙了。牛顿本人也同意这种观点,为此他辩解说:“如果恒星的数量是无限的,就不会聚集到一处,因为空间也是无限的,并没有一个可供聚集的‘中心点。”

从广义相对论可以推导出,宇宙要么在膨胀,要么在收缩。为此,爱因斯坦在公式中加入了一个“宇宙常数”,使得计算出的宇宙既不膨胀,也不收缩,保持稳恒状态。后来,他把加入“宇宙常数”的举动称为自己“一生中最大的错误”。endprint

1948年,奥地利天文学家邦迪和戈尔德提出一种理论,承认宇宙膨胀但否定大爆炸。后来霍伊尔发展了这个理论。霍伊尔认为,在星系散开的过程中,星系之间又形成新的星系;形成新星系的物质是“无中生有”的,而且运动的速度非常缓慢,用现在的技术无法测出。结论是,宇宙自始至终基本上保持着同一状态:过去宇宙是什么模样,未来宇宙仍是什么模样;宇宙既没有开始,也没有结束。这种理论被称为“连续创生论”,对应的宇宙模型是“稳恒态宇宙”。

1946年,俄裔美国天体物理学家伽莫夫将广义相对论与化学元素生成理论联系起来,提出了“热大爆炸”宇宙模型。他坚信,如果宇宙是从一个极其致密、高温的状态中爆炸产生的,早期大爆炸的辐射就应该残存在我们周围。伽莫夫的学生阿尔法和博士后赫尔曼随后计算出,伴随大爆炸产生的辐射在宇宙膨胀过程中应该逐渐损失能量,因此现在应该以射电辐射的形式存在,作为一个均质背景从天空的四面八方射来;由于时间久远,其辐射温度相当于摄氏零下270℃(绝对温度3 K)。在这么低的温度下,辐射是处于微波的波段。因为用光学望远镜看不见微波,天文学家没法给这个理论找到观测上的支持。

意外的发现

1964年,贝尔实验室的无线电工程师阿诺·彭齐亚斯和罗伯特·威尔逊制作了一个非常精密的微波探测天线并进行试验。试验的目的是让该仪器接收卫星发回的微弱信号,并把数据记录下来,以改善卫星通信质量。为了测量来自太空的微弱信号,他们采用方向性特别好的喇叭形天线以减少无线电干扰。

1964年5月,彭齐亚斯和威尔逊进行了初步的测量。出乎两人的意料,在7.35厘米波长的微波段上,扣除大气噪声、天线结构的固有噪声及地面噪声后,最后还有3.5K的剩余噪声。为了找出这剩余噪声的来源,他们首先考虑的是天线本身产生的电噪声是否比预期的高。为此,彭齐亚斯和威尔逊仔细检查了天线金属板的接缝,赶走了曾在天线的喉部筑巢的鸽子,并清扫了天线,除去了鸽子巢居期间在天线喉部涂上的一层“白色的电介质”(鸽粪)。但是,所有努力均未能消除这个剩余噪声。

从1964年到1965年两年间,彭齐亚斯和威尔逊发现,这个消除不掉的噪声,不但在一天之中没有变化,在一年四季也没有变化,且是一种与方向无关、亦无偏振的稳定不变的噪声。看来,这种噪声不是来自人造卫星,也不会来自太阳或银河系,更不可能来自河外星系的某个射电源——因为以上这些来自某个辐射源的信号是有方向性的:当天线指向这个方向时,接收到的信号就较强;背对这个方向时,接收到的信号就较弱。而实际测得的这些微波噪声完全不随方向变化,这就足以证明这些噪声一定不是来自任何一个射电源,它必定来自银河系之外的、更广阔的宇宙。它在各方向上分布均匀,弥漫于整个天空背景上,而它的等效温度为3K左右,彭齐亚斯和威尔逊就给它起名为“3K微波背景辐射”。但这种微波背景辐射究竟是什么原因造成的?他们无法回答。

这个神秘的消除不掉的微波噪声的来源及意义,很快从普林斯顿大学的天体物理学家那里得到了解释。彭齐亚斯在一次偶然的电话联系中,从朋友贝尔纳·伯克(麻省理工学院的射电天文学家)那里得知,普林斯顿大学的一个天体物理研究小组不久前发表了一篇论文的预印本,文中预言,3厘米波长的微波段应当接收到温度为10K的噪声。彭齐亚斯与威尔逊很快就向这篇文章的作者、普林斯顿大学的物理教授迪克等人发出邀请,并进行了互访。他们相信,彭齐亚斯和威尔逊发现的这一消不掉的噪声,很可能正是普林斯顿大学以迪克为首的研究小组已经理论预言、并正在努力寻找但还没有找到的东西。这次互访促成了两项不同领域研究成果的绝妙合作,使贝尔电话实验室为提高卫星通信质量而进行的非常实用的研究项目,意外获得了完全属于基础理论研究的、纯粹是宇宙学探索的一项根本性的重大发现。

这个偶然的发现为微波背景辐射的相关预言提供了坚实的验证,并为大爆炸假说提供了有力的证据。发现的过程虽然偶然,但彭齐亚斯和威尔逊并未轻易放过这个异常现象,终于得出了重要结论。他俩因此获得了1978年诺贝尔物理学奖。瑞典科学院在颁奖的决定中指出:“彭齐亚斯和威尔逊的发现是一项带有根本意义的发现:它使我们能够获得很久以前,在宇宙的创生时期所发生的宇宙过程的信息。”

微波背景辐射的发现和确认使绝大多数物理学家相信,大爆炸是描述宇宙起源和演化的最好理论。

大爆炸学说被后来的观测研究逐一证实:1989年的一个早晨,美国航空航天局将COBE卫星送上太空。COBE最初9分钟的观测结果表明,宇宙微波背景辐射具有完美的黑体辐射谱。宇宙大爆炸理论进一步得到证实。美国学者约翰·马瑟和乔治·斯穆特根据COBE卫星测量结果进行分析计算后发现,宇宙微波背景辐射与绝对温度2.7K黑体辐射非常吻合,此外,微波背景辐射在不同方向上的温度有着极其微小的差异,也就是说存在各向异性。这两位学者也因此获得2006年度诺贝尔物理学奖。

宇宙简史

按照目前的认识,我们可以大致描述宇宙创生以来的过程:

137亿年前——在大爆炸发生的瞬间,宇宙的体积为零,温度无限高。大爆炸开始后,随着宇宙的膨胀,辐射的温度随之降低。大爆炸1秒钟之后,温度降低到了100亿度,这个温度是太阳中心温度的一千倍。此时的宇宙中主要包含光子、电子、中微子和它们的反粒子,以及少量的质子和中子。此时粒子的能量极高,它们相互碰撞并产生大量不同种类的正反粒子对。

中微子和反中微子之间以及它们和其他粒子之间的相互作用非常微弱,所以它们并没有互相湮灭掉,以至于直到今天它们仍然存在。

宇宙继续膨胀,温度的降低使得粒子不再具有如此高的能量,它们开始结合。与此同时,大部分正反电子相互湮灭,并产生了更多的光子。大爆炸100秒后,温度降到了10亿度,这相当于最热的恒星的内部温度。一个质子和一个中子组成氚核(重氢);氚核再与一个质子和一个中子形成氦核。根据计算,大约有四分之一的质子和中子转变为氦核和少量更重元素。其余的中子衰变为质子,也就是氢原子核。

几个小时后,氦和其他元素的产生停止了。在这之后的100万年左右,宇宙中没有新物质形成,只有空间在膨胀。当温度降低到几千度时,电子和原子核不能再抵抗彼此间的吸引力而结合成原子。由于宇宙存在着小范围的不均匀,区域性的坍缩开始发生,其中一些区域在区域外物体引力的作用下开始缓慢地旋转。当坍缩的区域逐渐缩小,由于角动量的守恒,它自转的速度就逐渐加快。当区域变得足够小时,自转的速度足以平衡引力的作用,像我们银河系这样的铁饼状星系就诞生了。另外一些区域则由于没有发生旋转而形成椭圆形星系。这种星系的整体不发生旋转,但它的某些部分稳定地绕着它的中心旋转,因而也能平衡引力坍缩。

由于星系中的星云仍有不均匀性,它们被分割为更小的星云,并进一步收缩形成恒星。恒星由于引力坍缩产生的高温引发核聚变,聚变产生的能量又抵抗了继续收缩的引力,恒星得以稳定地燃烧。质量越大的恒星燃烧得越快,因为它需要释放更多的能量才能平衡自身更强的引力,它们甚至会在短短1亿年里耗尽自己的燃料。

恒星有时会发生被称为“超新星”的巨大喷发,这种喷发令其余一切恒星都显得黯淡无光。这时,一些恒星在晚期产生的重元素就会被抛回到星系中,成为构成下一代恒星的砖瓦。我们的太阳就是第二代或第三代恒星,它含有大约2%的这种重元素。还有少量的重元素聚集并形成了绕恒星公转的行星,地球就是其中之一。

五十年前,生活在这颗不起眼星球上的灵长类动物发现了宇宙大爆炸残留的痕迹——微波背景辐射。又过了四十多年,一位叫霍金的物理学家在名为《乔治的宇宙秘密钥匙》的儿童科幻小说中这样描述宇宙的诞生:“宇宙起源有点像沸腾水中的泡泡。宇宙的开端,可能出现了许多小泡泡,然后消失。泡泡膨胀的同时,一些泡泡会不断缩小直至消失;而一些泡泡在膨胀到一定尺度后,还可以继续以不断增大的速率膨胀,形成我们今天看到的宇宙。”endprint

猜你喜欢

星系恒星宇宙
跟着星系深呼吸
迄今发现的最大星系
(18)刺杀恒星
宇宙第一群
恒星的演化
恒星不恒
星系大碰撞
这宇宙
地外星系
宇宙最初的大爆炸