东北延边地区晚中生代柳洞岩体的成因:锆石U-Pb年代学和地球化学证据
2014-07-05徐仲元刘正宏李世超范志伟
张 超,徐仲元,刘正宏,李世超,时 溢,范志伟
吉林大学地球科学学院,长春 130061
东北延边地区晚中生代柳洞岩体的成因:锆石U-Pb年代学和地球化学证据
张 超,徐仲元,刘正宏,李世超,时 溢,范志伟
吉林大学地球科学学院,长春 130061
柳洞岩体位于延边地区和龙市南部,大地构造位置上处于古洞河断裂西南侧,龙岗地块北缘,其岩性为二长花岗岩。为确定其侵位时代和大地构造环境,对柳洞岩体进行了系统的岩相学和年代学研究。N-6和N-7样品LA-ICP-MS锆石U-Pb测年结果显示,其加权平均年龄分别为(118.63±0.69)Ma和(118.58±0.87)Ma。岩体具有高硅(w(SiO2)=70.30%~76.30%)、富碱(w(Na2O+K2O)=7.82%~8.52%)、富铝(w(Al2O3)=12.30%~15.50%)和低钛(w(TiO2)=0.16%~0.29%)的特点,属于高钾钙碱性系列。A/CNK值为1.03~1.11,为弱过铝质岩石。分异指数(DI)为87.99~94.89,固结指数(SI)为2.39~5.31,反映了该岩体经历了高程度分异演化作用。δEu为0.63~0.92,具有中等铕负异常,LREE/HREE和(La/Yb)N值分别为3.46~8.09和10.59~33.94,显示轻稀土元素相对富集、重稀土元素亏损的特点。柳洞岩体明显富集Cs、Rb、Ba、K等大离子亲石元素(LILE),同时亏损Nb、Ta、Ti等高场强元素(HFSE)以及P元素。综合岩相学、年代学、岩石地球化学特征及区域地质资料,柳洞岩体具有高分异的高钾钙碱性I型花岗岩的特点,形成于后造山向伸展转换的体制环境下。
地球化学;锆石U-Pb年代学;后造山花岗岩;晚中生代;延边地区
0 前言
显生宙以来,受古亚洲洋构造域和滨太平洋构造域的影响,延边地区岩浆活动强烈[1]。柳洞岩体位于延边地区和龙市南部,其东侧为中国与朝鲜界河-图们江,大地构造位置上处于龙岗地块北缘。在1∶20万大拉子幅的地质报告*吉林省地质局区域地质测量大队.大拉子幅(1∶20万)区域地质测量报告.长春:吉林省区域地质矿产调查所,1964.中,前人从地质、岩性等方面将柳洞岩体列入华力西晚期侵入旋回,推测其侵位时代为晚二叠世,但同时认为该岩体也可能为燕山侵入旋回。Wu等[2]对柳洞岩体邻区进行的花岗岩锆石U-Pb测年结果为(114±1)Ma,侵位时代为白垩纪。
以上研究[2-3]显示,柳洞岩体形成时代及其构造背景需要进一步厘定。为确定该岩体的形成时代及岩石地球化学特征,对柳洞岩体进行了系统的岩相学、年代学和岩石地球化学研究,对认识延边地区燕山晚期的构造演化具有重要意义。
1 地质背景
延边地区位于中亚造山带东缘,滨太平洋构造域西侧,佳木斯地块、兴凯地块和龙岗地块交界处[4-5](图1a)。北西向的古洞河断裂从区内通过,断裂北侧为中亚造山带东缘,南侧为发育华北地台绿片岩-角闪岩相的变质岩基底。柳洞岩体呈北东向展布,出露面积约70 km2,岩体侵入到侏罗纪花岗岩与太古宙变质岩基底中,与早白垩世沉积地层断层接触 (图1b)。
2 样品描述、测试方法和分析结果
2.1 样品描述
样品采自研究区图们江岸边及牛心山南侧,均为新鲜出露岩石,样品岩性主要为肉红色中细粒二长花岗岩,中细粒花岗结构,块状构造。主要组成矿物有:条纹长石(约20%),粒度1~2 mm,形状不规则,具有条纹结构,发生强烈高岭土化;微斜长石(约20%),粒度1~3.5 mm,呈板柱状,格子状双晶清晰可见,轻微蚀变;斜长石(约30%),粒度1~2 mm,呈半自形-自形板柱状,部分颗粒中心发生轻微高岭土化和绢云母化,聚片双晶发育,斜长石牌号An=26,为更长石;石英(>25%),粒度1~4 mm,呈他形粒状分布在其他矿物之间,有少量细小裂纹;黑云母(<5%),片状,大多发生强烈的绿泥石化,局部完全蚀变为蠕绿泥石;此外还有少量白云母。出现的副矿物有磁铁矿、长柱状磷灰石和锆石(图2a)。在砚水平附近岩体中见晶洞构造,晶洞内发育较好的石英晶簇(图2b)。
图1 和龙地区柳洞岩体分布图(图a据文献[6]修编)Fig.1 Distribution of Liudong pluton in Helong area(Fig.a modified from reference[6])
a.细粒二长花岗岩;b.中细粒二长花岗岩。Pl.斜长石;Pth.条纹长石;Ms.白云母;Q.石英; Ap.磷灰石;Mc.微斜长石;Chl.绿泥石。图2 柳洞岩体二长花岗岩显微照片(a)特征和野外照片(b)Fig.2 Microphotographs features(a)and photographs for the Early Cretaceous monzonitic granite(b)
2.2 测试方法
锆石样品在河北省廊坊市区域地质调查研究所进行挑选。先将所采样品粉碎至80~100目,通过淘洗和电磁方法对样品中的锆石进行挑选,在双目镜下挑选没有明显裂隙和包裹体的锆石颗粒进行制靶。然后采集样靶透射光、反射光和阴极发光的图片。锆石的制靶、显微图像的采集以及锆石U-Pb同位素测年分析在西北大学大陆动力学国家重点实验室完成。对锆石样品的分析在Agilent7500型ICP-MS和ComPexl02 ArF准分子激光器以及GeoLas200M光学系统联机下进行,激光束直径为30 μm,剥蚀深度为20~40 μm。将国际标准锆石91500作为锆石年龄外标标准物质,元素含量则采用NIST SRM610作为外标,29Si作为内标[7-9]。通过Andersen的方法对实验测得数据进行同位素比值校正以去除普通铅的影响,锆石年龄谐和图通过Isoplot3.0绘制而成,所得同位素比值年龄的误差均为1σ。
在国家地质测试中心采用X射线荧光光谱仪对样品的主量元素进行了分析,通过等离子质谱仪(X-series)进行微量元素的分析。
2.3 分析结果
图3 早白垩世二长花岗岩(N-6)中部分锆石阴极发光图像Fg.3 Cathodoluminescence (CL) images of selected zircons from the Early Cretaceous monzonitic granite(N-6)
2.3.1 锆石U-Pb测年
为进一步确定柳洞岩体的年龄,对本次工作所取的N-6和N-7两个样品进行LA-ICP-MS 锆石U-Pb定年分析,分析结果见表1。
N-6中锆石大小为50~150 μm,呈半自形-自形,多数为长柱状,长宽比3∶1~1∶1,内部可见少量裂隙和包裹体,阴极发光(CL)图像(图3)下可见清晰的震荡生长环带,锆石Th/U值为0.39~1.61,暗示其岩浆成因的特点[10]。对样品N-6共进行25个锆石颗粒的测定,2个点由于锆石内部裂隙导致铅丢失致使所得结果较年轻,其余23个点206Pb/238U年龄范围在(115±1)~(123±1)Ma 。
N-7中锆石大小为100~150 μm,呈半自形-自形,大多数为长柱状,长宽比3∶1~2∶1,内部可见少量裂隙和包裹体,阴极发光(CL)图像(图4)下可见清晰的震荡生长环带,锆石Th/U值为0.46~1.34,暗示其岩浆成因的特点[10]。对样品N-7进行了25个锆石颗粒的测定,1个点由于锆石内部裂隙导致铅丢失致使所得结果较年轻,其余24个点206Pb/238U年龄范围在(114±1)~(123±3)Ma。
图4 早白垩世二长花岗岩(N-7)中部分锆石阴极发光图像Fg.4 Cathodoluminescence (CL) images of selected zircons from the Early Cretaceous monzonitic granite(N-7)
N-6和N-7样品中锆石U-Pb年龄谐和图显示大部分分析结果位于谐和线上及其附近,所得出的加权平均年龄分别为(118.63±0.69)Ma(n=18,MSWD=2.7)和(118.58±0.87)Ma(n=24,MSWD=3.7)(图5)。结合所测样品锆石岩浆成因的特点,该年龄解释为柳洞岩体的侵位年龄,表明和龙地区柳洞岩体二长花岗岩的侵位时代为早白垩世晚期。
2.3.2 岩石地球化学
柳洞岩体二长花岗岩的主量元素和微量元素分析结果见表2。
主量元素 岩体中w(SiO2)为70.30%~76.30%,全碱w(Na2O+K2O)为7.82%~8.52%,岩石具有低Ti(w(TiO2)=0.16%~0.29%)、富铝(w(Al2O3)=12.30%~15.50%)的特点。分异指数(DI)为87.99~94.89,固结指数(SI)为2.39~5.31,反映岩体经历了高程度分异演化作用。A/CNK为1.03~1.11,属于弱过铝质岩石(图6a)。在TAS图上样品全部落入亚碱性系列(图略),在w(SiO2)-w(K2O)图上样品全部落入高钾钙碱性范围内(图6b),与中国东北地区燕山期侵入岩相似。岩石地球化学特征与Barbarin[11]划分的高钾钙碱性花岗岩类(KCG)相似。
稀土元素 柳洞岩体稀土元素总量(w(REE))为(55.51~124.30)×10-6,质量分数较低。所有样品具有相似的稀土分配模式。LREE/HREE和(La/Yb)N值分别为3.46~8.09和10.59~33.94,指示轻稀土元素相对富集且分馏明显、重稀土元素亏损的特点。δEu为0.63~0.92,具有中等Eu负异常(图7a)。Eu的负异常应与斜长石在源区的分离结晶有关。
图5 柳洞岩体二长花岗岩中锆石LA-ICP-MS U-Pb年龄谐和图Fig.5 U-Pb concordia diagrams and the average age diagrams summarizing the LA-ICP-MS zircon data for the Early Cretaceous monzonitic granite from Liudong pluton
图6 延边和龙地区二长花岗岩含铝指数(a)和w(SiO2)-w(K2O)图(b)Fig.6 Aluminous index diagram (a) and w(SiO2) versus w(K2O) diagram (b)for the monzonitic granite in Helong, Yanbian area
球粒陨石标准化值据文献[12];原始地幔标准化值据文献[13]。图7 和龙地区二长花岗岩球粒陨石标准化稀土元素配分模式图(a)和原始地幔标准化微量元素蛛网图(b) Fig.7 Chondrite-normalized REE pattern(a) and primitive mantle-normalized trace element pattern (b) for the Early Cretaceous monzonitic granite in Helong area
样号w(232Th)/10-6w(238U)/10-6Th/UU-Th-Pb同位素比值207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ年龄/Ma207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σN-6.1*111714510.770.058820.002470.137530.005480.016920.00022561641315108.01.0N-6.276016560.460.049010.002320.124640.005850.018440.000121481091195117.80.8N-6.3188317981.050.049910.001130.127470.003020.018450.00012191421223117.90.8N-6.4155817550.890.047530.001050.124080.002960.018880.0001876381193121.01.0N-6.5100014140.710.050440.001120.130480.003020.018710.00013215411253119.50.8N-6.6*112116990.660.059040.001870.148690.004540.018320.00023569451414117.01.0N-6.75758090.710.050360.001400.126960.003530.018330.00014211501213117.10.9N-6.85635571.010.047720.001570.119940.003950.018280.0001785581154117.01.0N-6.9151516170.940.052580.001420.132410.003190.01840.00014311411263117.50.9N-6.10151418070.840.048380.001010.12260.002600.018370.00013118371172117.40.8N-6.11100011830.850.047240.001450.122870.003730.018940.0001762521183121.01.0N-6.1257715620.370.046650.001000.120690.002680.018750.0001331371162119.80.8N-6.13119914290.840.048390.001130.123260.002810.018530.00012118421183118.40.7N-6.14310123111.340.051480.000950.129540.002100.018360.00013262251242117.30.8N-6.1572914380.510.049550.001640.129370.004130.018970.00020174541244121.01.0N-6.16115216560.700.047630.001060.121630.002650.018500.0001181411172118.20.7N-6.17155416820.920.049400.001090.127230.002800.018660.00010167411223119.20.7N-6.18*146318330.800.075010.003480.126030.005560.012190.00017106996121578.01.0N-6.192374680.510.048590.002630.121790.006440.018300.00025128941176117.02.0N-6.20132918110.730.048650.001060.12720.002780.018900.00013131391223120.70.8N-6.21*49510260.480.047050.00270.117830.006610.018160.00022521261136116.01.0N-6.22*8309990.830.055620.002090.142710.005360.018580.00016437681355119.01.0N-6.2372614620.500.050090.001840.126560.004780.018290.00020199671214117.01.0N-6.24*78513790.570.056920.001790.152280.004980.019330.00019488551444123.01.0N-6.25*70210070.700.057160.002580.142080.006580.018010.00020498821356115.01.0N-7.199513410.740.049350.001150.126230.002910.018600.00015164391213118.80.9N-7.2143810351.390.053740.001540.134400.003810.018200.00015360491283116.30.9N-7.398615410.640.050500.000940.129800.002490.018650.00015218301242119.10.9N-7.4216524290.890.050320.00280.126050.006840.018170.000232101291216116.01.0N-7.598610750.920.049640.001170.127050.003160.018520.00014178431213118.30.9N-7.6141412271.150.048900.001330.128760.003460.019110.00016143471233122.01.0N-7.7118814780.800.053300.001510.136340.004270.018410.00015341561304117.61.0N-7.8139410671.310.05540.004030.139570.007830.019240.00048429811337123.03.0N-7.9104113380.780.052460.001120.137320.002890.019010.00016305331313121.41.0N-7.1098114880.660.050080.00240.128980.006280.018650.00032199821236119.02.0N-7.115086120.830.052160.001810.134650.004550.018800.00018293591284120.01.0N-7.128257941.040.050930.002780.12880.007330.018340.000312381001237117.02.0N-7.137568720.870.053990.003700.136370.009170.018490.000323711211308118.02.0N-7.1450610050.500.051350.002000.126360.005080.017790.00018257741215114.01.0N-7.151755370.330.053290.005190.138640.013120.019120.0003834217813212122.02.0N-7.16331220511.610.051000.000900.130700.002490.018530.00012241321252118.40.8N-7.17133413750.970.047710.001320.121530.003320.018550.0001485501163118.50.9
表1(续)
注:*所标样品未参加年龄计算。
表2 延边和龙地区二长花岗岩主量元素和微量元素分析结果
表2(续)
注:主量元素质量分数单位为%;微量元素质量分数单位为10-6。
微量元素 在原始地幔标准化微量元素蛛网图(图7b)中,柳洞岩体明显富集Cs、Rb、Ba、K等大离子亲石元素(LILE),同时亏损Nb、Ta、Ti等高场强元素(HFSE)以及P。Nb/Ta值为11.00~16.27。高场强元素Nb、Ta的亏损,反映了岩浆来源于地壳或者受到地壳物质的混染,其中,P、Ti的亏损应与磷灰石、钛铁矿、榍石及角闪石、黑云母等含P、Ti矿物的分离结晶有关[14-16]。Rb/Ta值为11.88~16.27,处于地幔平均值与地壳平均值之间[17],暗示其源区可能为壳幔混源[18]。
3 讨论
3.1 柳洞岩体侵位时代
关于柳洞岩体的侵位时代前人曾认为是晚二叠世,但也推测可能为燕山期花岗岩。本次工作所采年龄样品位于图们江沿岸,其形成时代在1∶20万大拉子幅*吉林省地质局区域地质测量大队.大拉子幅(1∶20万)区域地质测量报告.长春:吉林省区域地质矿产调查所,1964.和1∶25万延吉市幅地质报告*吉林省地质调查院.延吉市幅区域地质调查报告.北京:全国地质资料馆,2007.中定为晚二叠世。Wu等[2]、张艳斌等[3]将该处定为侏罗纪花岗岩。二长花岗岩的CL图像及Th/U值(0.39~1.34)显示具有典型的岩浆成因,其定年结果应代表了花岗岩的形成时代。LA-ICP-MAS锆石U-Pb定年结果显示,样品N-6和N-7加权平均年龄分别为(118.63±0.69)Ma和(118.58±0.87)Ma,并非前人所认为的晚二叠世或侏罗纪花岗岩。柳洞岩体侵位时代为早白垩世晚期。
3.2 构造环境
柳洞岩体富硅、富碱、富铝和低钛,稀土元素质量分数较低,轻重稀土元素分异较强,富集Ba、Rb、U、K等大离子亲石元素,相对亏损Nb、Ta、P、Ti等元素, A/CNK为1.03~1.11,属于弱过铝质岩石,DI值为87.99~94.89,显示了高分异I型花岗岩的特点。野外所见的晶洞构造暗示柳洞岩体侵位深度应较浅,且经历了高程度的分异演化[19]。
IAG.岛弧花岗岩类;CAG.大陆弧花岗岩类;CCG.大陆碰撞花岗岩;POG.后造山花岗岩类;RRG.与裂谷有关的花岗岩类;CEUG.与大陆的造陆抬升有关的花岗岩类。图8 柳洞岩体早白垩世二长花岗岩的主量元素构造环境判别图解(底图据文献[21])Fig.8 The discrimination diagrams of the main elements of the Early Cretaceous monzonitic granite(base map modified after reference[21])
柳洞岩体侵位年龄为(118.63±0.69) Ma和(118.58±0.87) Ma,属于早白垩世晚期,且具有高钾钙碱性高分异I型花岗岩的特点。主要造岩矿物有石英、斜长石、条纹长石和少量黑云母及白云母,具有后造山花岗岩的特点。岩石学和地球化学特征可以对应Barbarin[11]的高钾钙碱性(KCG)类型。Liegeois[20]认为高钾钙碱性岩石主要形成于同碰撞岩石圈加厚之后的伸展垮塌向非造山板内的过渡阶段。在Maniar等[21]的w(SiO2)-w(Al2O3)(图8a)和w(SiO2)-w(FeOt)/(w(FeOt)+w(MgO))(图8b) 构造判别图上,柳洞岩体样品落入后造山环境中。
在Pearce等[22-23]的w(Ta+Yb)-w(Rb)(图9a)和w(Y+Nb)-w(Rb)(图9b)的构造判别图解中,大部分样品落入后碰撞环境中。该区存在中侏罗世的C型埃达克岩(待发表资料),暗示了该早白垩世高钾钙碱性花岗岩可能形成于地壳加厚之后的伸展垮塌构造环境中。
前人根据岩浆活动的特点,认为晚三叠世-早侏罗世期间中国东部就已经开始受到古太平洋构造域的影响[5-6,24-25]。中国东部早白垩世存在具有活动大陆边缘特点的火山岩和I型花岗岩[26-28],暗示了中国东部早白垩世岩浆活动可能与古太平洋构造域的活动有关。而张旗等[29]根据中侏罗世-早白垩世中国东部广泛分布的C型埃达克岩推测中国东部高原的存在,且该时期大面积的岩浆活动与古太平洋构造域的活动关系不大,早白垩世的岩浆活动可能与中国东部高原的垮塌有关。华北东部地区早白垩世变质核杂岩的识别[30-31]及中国东部地区广泛分布的A型花岗岩[32]和双峰式火山岩[33]表明,早白垩世期间中国东部处于地壳伸展变形环境中[32-35],但对其动力学机制存在较大的争议[29,34,36-37]。
Zhang Yanbin等[3]对邻区百里坪岩体岩浆岩进行锆石U-Pb测年,认为早白垩世晚期岩体侵位构造环境应为伸展环境。郭春丽等[38]对辽东半岛饮马湾山岩体进行的锆石U-Pb测年显示为(120±4)~(129±2)Ma,并认为该期岩浆活动发育在伸展环境背景下。曾涛等[39]通过对东北新开岭地区晚中生代花岗岩的研究认为,研究区早白垩世期间处于挤压之后的伸展环境。汪洋等[40]对燕山地区侏罗纪-白垩纪岩浆岩研究认为,早白垩世期间研究区处于后造山崩塌的环境中。葛文春等[18]对大兴安岭中生代玄武岩的研究认为,晚侏罗世-早白垩世期间的岩浆活动受地幔柱活动的影响。柳洞岩体侵位时代与前人所测的百里坪岩体、饮马湾山岩体和新开岭地区岩体年龄误差范围内一致,且岩石地球化学特征上与新开岭地区白垩纪岩体类似,结合区域地质资料及中国东部大地构造环境[15-16,18,30-31,33-35,38-40],延边地区早白垩世期间,应处于伸展变形的环境中。高钾钙碱性花岗岩指示一种构造体制的变化[41],结合野外柳洞岩体特征和地球化学特征,笔者认为延边地区柳洞岩体形成于后造山向地壳伸展变形转换环境中。
4 结论
1)延边地区柳洞岩体LA-ICP-MS锆石U-Pb加权平均年龄为(118.63±0.69)Ma和(118.58±0.87)Ma,岩体侵位时代为早白垩世晚期,并非前人所认为的晚二叠世或侏罗纪。
2)柳洞岩体富硅、富碱、富铝和贫钛,LREE/HREE和(La/Yb)N值分别为3.46~8.09和10.59~33.94,轻重稀土元素分异较强,DI值为87.99~94.89,野外见有晶洞构造。野外地质特征及岩石地球化学特征具有高分异I型花岗岩的特点。Nb/Ta值及Nb、Ta负异常暗示其源区可能为壳幔混源。
3)柳洞岩体具有后造山花岗岩的特点,结合其岩石地球化学特征及中国东部早白垩世构造环境,柳洞岩体侵位应与地壳伸展变形有关,且延边地区早白垩世处于后造山向伸展转换体制环境下。
感谢西北大学大陆动力学国家重点实验室在锆石制靶和CL图像采集以及LA-ICP-MS 锆石U-Pb测年中给予的支持。衷心感谢给予帮助的郑常青教授。
[1] 刘先文,申宁华,葛肖虹.吉黑东部中生代两种机制的碰撞构造[J].长春地质学院学报,1994,24(4):385-389. Liu Xianwen, Shen Ninghua, Ge Xiaohong.Mesozoic Collision Tectonics in Eastern Jilin and Heilongjiang Provinces, Northeast China[J]. Journal of Changchun University of Earth Sciences, 1994, 24(4):385-389.
[2] Wu Fuyuan,Sun Deyou,Ge Wenchun, et al.Geo-chronology of the Phanerozoic Granitoids in Northeastern China[J].Journal of Asian Earth Sciences,2011,41(1):1-30.
[3] Zhang Yanbin,Wu Fuyuan,Wilde A S,et al.Zircon U-Pb Ages and Tectonic Implications of ‘Early Paleozoic’ Granitoids at Yanbian, Jilin Province, Northeast China[J].The Island Arc,2004,13(4):484-505.
[4] Jia Dacheng, Hu Ruizhong, Lu Yan,et al. Collision Belt Between the Khanka Block and the North China Block in the Yanbian Region, Northeast China[J]. Journal of Asian Earth Sciences, 2004, 23(2): 211-219.
[5] 裴福萍,许文良,靳克.延边地区晚三叠世火山岩的岩石地球化学特征及其构造意义[J].世界地质,2004,23(1):6-13. Pei Fuping, Xu Wenliang, Jin Ke. Petro-Geochemical Characteristics and Tectonic Significance of Late Triassic Volcanic Rocks in Yanbian Area, Northeastern China[J].Global Geology,2004,23(1):6-13.
[6] Yu Jiejiang,Wang Feng,Xu Wenliang,et al.Early Jurassic Mafic Magmatism in the Lesser Xing’an-Zhangguangcai Range,NE China, and Its Tectonic Implications: Constraints from Zircon U-Pb Chronology and Geochemistry[J].Lithos, 2012,142/143:256-266.
[7] 杨德彬,许文良,裴福萍,等.蚌埠隆起区古元古代钾长花岗岩的成因:岩石地球化学、锆石U-Pb年代学与Hf同位素的制约[J].地球科学:中国地质大学学报,2009,34(1):148-164. Yang Debin, Xu Wenliang, Pei Fuping, et al. Petrogenesis of the Paleoproterozoick Feldspargranites in Bengbu Uplift:Constraints from Petro-Geochemistry,Zircon U-Pb Dating and Hf Isotope[J].Earth Science:Journal of China University of Geosciences,2009,34(1):148-164.
[8] Yuan Honglin,Gao Shan,Liu Xiaoming,et al.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laserablation Inductively Coupled Plasmamass Pectrometry[J]. Geostandards News Letter,2004,28(3):353-370.
[9] 王兴安,徐仲元,刘正宏,等.大兴安岭中部柴河地区钾长花岗岩的成因及构造背景:岩石地球化学、锆石U-Pb同位素年代学的制约[J].岩石学报,2012,28(8):2647-2655. Wang Xing’an,Xu Zhongyuan, Liu Zhenghong,et al. Petrogenesis and Tectonic Setting of the K-Feldspar Franites in Chaihe Area, Central Greater Xing’an Range:Constraints from Petro-Geochemistry and Zircon U-Pb Isotope Chronology[J]. Acta Petrologica Sinica, 2012,28(8):2647-2655.
[10] Pupin J P. Zircon and Granite Petrology[J]. Con-tributions to Mineralogy and Petrology , 1980,73(3):207-220.
[11] Barbarin B. A Review of the Relationships Between Granitoid Types, Their Origrins and Their Geodynamic Environments[J]. Lithos,1999,46(3):605-626.
[12] Boynton W V. Geochemistry of the Rare Earth Elements: Meteorite Studies[C]//Henderson P.Rare Earth Element Geochemistry. Amsterdam:Elsevier,1984:63-114.
[13] Sun S S, McDonough W F.Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J].Geological Society of Special Publication,1989,42(1): 313-345.
[14] 孙德有,吴福元,高山,等.吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J].地学前缘,2005,12(2):263-275. Sun Deyou, Wu Fuyuan, Gao Shan,et al.Confirmation of Two Episodes of A-Type Granite Emplacement During Late Triassic and Early Jurassic in the Central Jilin Province, and Their Constraints on the Structural Pattern of Eastern Jilin-Heilongjiang Area,China[J].Earth Science Frontiers,2005,12(2):263-275.
[15] 肖娥,邱检生,胡建,等.浙江瑶坑碱性花岗岩体的年代学、地球化学及其成因与构造指示意义[J].岩石学报,2007,23(6):1431-1440. Xiao E,Qiu Jiansheng, Hu Jian,et al. Geochronology and Geochemistry of the Yaokeng Alkaline Granitic Pluton in Zhejiang Province:Petrogenetic and Tectonic Implications[J].Acta Petrologica Sinica,2007,23(6):1431-1440.
[16] 邱检生,胡建,王孝磊,等.广东河源白石冈岩体:一个高分异的I型花岗岩[J].地质学报,2005,79(4):503-514. Qiu Jiansheng,Hu Jian, Wang Xiaolei,et al.The Baishigang Pluton in Heyuan,Guangdong Province:A Highly Fractionated I-Type Granite[J].Acta Geologica Sinica,2005,79(4):503-514.
[17] 李舢,王涛,童英,等.北山辉铜山泥盆纪钾长花岗岩锆石U-Pb年龄、成因及构造意义[J].岩石学报,2011,27(10):3055-3070. Li Shan, Wang Tao, Tong Ying, et al.Zircon U-Pb Age, Origin and Its Tectonic Significances of Huitongshan Devonian K-Feldspar Granites from Beishan Orogen, NW China[J].Acta Petrologica Sinica,2011,27(10):3055-3070.
[18] 葛文春,林强,孙德有,等.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据[J].岩石学报,1999,15(3):397-407. Ge Wenchun,Lin Qiang,Sun Deyou,et al.Geochemical Characteristics of the Mesozoic Basalts in Da Hinggan Ling:Evidence of the Mantle-Crust Interaction[J].Acta Petrologica Sinica,1999, 15(3):397-407.
[19] 邱检生,肖娥,胡建,等.福建北东沿海高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J].岩石学报,2008,24(11):2468-2484. Qiu Jiansheng, Xiao E,Hu Jian, et al.Petrogenesis of Highly Fractionated I-Type Granites in the Coastal Area of Northeastern Fujian Province: Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes[J].Acta Petrologica Sinica,2008,24(11):2468-2484.
[20] Liegeois J P,Jacques Navez,Jan Hertogen,et al.Black.Contrasting Origin of Post-Collisional High-K Cale-Alkaline and Shoshonitic Versus Alkaline and Peralkaline Granitoids, the Use of Sliding Normalization[J]. Lithos,1998,45(1/2/3/4):1-28.
[21] Maniar P, Piccoli P. Tectonic Discrimination of Granitoids[J].Geological Society of America Bulletin,1989,101(5):635-643.
[22] Pearce J A. Sources and Setting of Granitic Rocks[J]. Episodes, 1996, 19(4):120-125.
[23] Julia A Pearce, Nigel B W, Harris,et al.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J].Journal of Petrology, 1984,25(4):956-983.
[24] 林强,葛文春,孙德有,等.中国东北地区中生代火山岩的大地构造意义[J].地质科学,1998,33(2):129-139. Lin Qiang,Ge Wenchun, Sun Deyou,et al.Tectonic Significance of Mesozoic Volcanic Rocks in Northeastern China[J]. Scientia Geologica Sinica,1998,33(2):129-139.
[25] Zhou Jianbo, Wilde A S, Zhang Xingzhou, et al.The Onset of Pacific Margin Accretion in NE China: Evidence from the Heilongjiang High-Pressure Metamorphic Belt[J]. Tectonophysics,2009,478(3/4):230-246.
[26] Zhou X M, Li W X.Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas[J]. Tectonophysics,2000,326(3/4):269-287.
[27] Pei Fuping,Xu Wenliang,Yang Debin,et al. Petrogenesis of Late Mesozoic Granitoids in Southern Jilin Province, Northeastern China:Geochronological, Geochemical and Sr-Nd-Pb Isotopic Evidence[J]. Lithos,2011,125(1/2):27-39.
[28] Yu Yang, Xu Wenliang, Pei Fuping,et al. Chronology and Geochemistry of Mesozoic Volcanic Rocks in the Linjiang Area, Jilin Province and Their Tectonic Implications[J]. Acta Geologica Sinica,2009,83 (2):245-257.
[29] 张旗,钱青,王二七,等.燕山中晚期的中国东部高原:埃达克岩的启示[J].地质科学, 2001,36(2):248-255. Zhang Qi, Qian Qing, Wang Erqi,et al. An East China Plateau in Mid-Late Yanshanian Period: Implication from Adakites[J].Chinese Journal of Geology, 2001,36(2):248-255.
[30] 刘俊来,关会梅,纪沫,等.华北晚中生代变质核杂岩及其对岩石圈减薄机制的约束[J].自然科学进展,2006,16(1):21-26. Liu Junlai,Guan Huimei,Ji Mo, et al.North China Late Mesozoic Metamorphic Core Complex and Lithospheric Thinning Mechanism of the Constraint[J].Progress in Natural Science, 2006,16(1):21-26.
[31] 杨进辉,吴福元,钟孙霖,等.华北东部早白垩世花岗岩侵位的伸展地球动力学背景:激光40Ar/39Ar年代学证据[J]. 岩石学报,2008, 24(6): 1175-1184. Yang Jinhui, Wu Fuyuan, Chung Sunlin,et al.The Extensional Geodynamic Setting of Early Cretaceous Granitic Intrusions in the Eastern North China Craton: Evidence from Laser-ablation40Ar/39Ar Dating of K-Bearing Minerals[J]. Acta Petrologica Sinica,2008,24 (6):1175-1184.
[32] Wu Fuyuan, Sun Deyou, Li Huimin,et al. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis[J]. Chemical Geology,2002,187(1/2):143-173.
[33] Pei Fuping, Xu Wenliang, Yang Debin, et al. Geochronology and Geochemistry of Mesozoic Mafic-Ultramafic Complexes in the Southern Liaoning-Southern Jilin Provinces, NE China: Constraints on the Spatial Extent of the North China Craton Destruction[J]. Journal of Asian Earth Sciences,2011,40(2):636-650.
[34] Wu Fuyuan,Lin Jingqian,Wilde A S,et al.Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China[J].Earth and Planetary Science Letters, 2005,233(1/2):103-119.
[35] 张允平.东北亚地区晚侏罗-白垩纪构造格架主体特点[J].吉林大学学报:地球科学版, 2011,41(5):1267-1284. Zhang Yunping.Tectonic Framework and Main Characteristics of NE China Areas in Late Jurassic and Cretaceous Period[J].Journal of Jilin University: Earth Science Edition, 2011,41(5):1267-1284.
[36] 周新华.中国东部中、新生代岩石圈转型与减薄研究若干问题[J].地学前缘,2006,13(2):50-64. Zhou Xinhua.Major Transformation of Subcontinental Lithosphere Beneath Eastern China in the Cenozoic-Mesozoic: Review and Prospect[J].Earth Science Frontiers,2006,13(2):50-64.
[37] 肖庆辉,刘勇,冯艳芳,等.中国东部中生代岩石圈演化与太平洋板块俯冲消减关系的讨论[J].中国地质,2010,37(4):1092-1101. Xiao Qinghui, Liu Yong, Feng Yanfang,et al.A Preliminary Study of the Relationship Between Mesozoic Lithosphere Evolution in Eastern China and the Subduction of the Pacific Plate[J].Geology in China,2010,37(4):1092-1101.
[38] 郭春丽,吴福元,杨进辉,等.中国东部早白垩世岩浆作用的伸展构造性质:以辽东半岛南部饮马湾山岩体为例[J].岩石学报,2004,20(5):1193-1204. Guo Chunli,Wu Fuyuan,Yang Jinhui,et al. The Extensional Setting of the Early Cretaceous Magmatism in Eastern China:Example from the Yinmawanshan Pluton in Southern Liaodong Peninsula[J]. Acta Petrologica Sinica,2004,20(5):1193-1204.
[39] 曾涛,王涛,郭磊,等.东北新开岭地区晚中生代花岗岩类时代、成因及地质意义[J].吉林大学学报:地球科学版,2011,41(6):1881-1900. Zeng Tao,Wang Tao,Guo Lei,et al.Ages,Origin and Geological Implications of Late Mesozoic Granitoids in Xinkailing Region, NE China[J]. Journal of Jilin University:Earth Science Edition,2011,41(6):1881-1900.
[40] 汪洋,姬广义,邓晋福.燕山地区侏罗纪-白垩纪岩浆活动特征及其与造山演化的关系[J].矿物岩石地球化学通报,2003,22(4):344-349. Wang Yang,Ji Guangyi,Deng Jinfu.Jurassic-Early Cretaceous Magmatism in the Yanshan Orogen:Characteristics and Relations with Orogenic Evolution[J].Bulletin of Mineralogy ,Petrology and Geochemistry,2003,22(4):344-349.
[41] 肖庆辉.花岗岩研究思维与方法[M].北京:地质出版社,2002:20-25. Xiao Qinghui.Thinking and Methods in the Study of Granites[M].Beijing:Geological Publishing House, 2002:20-25.
Petrogenesis of the Late Mesozoic Liudong Pluton in Yanbian Area NE China:Evidence from Zircon U-Pb Geochronology and Geochemistry
Zhang Chao, Xu Zhongyuan, Liu Zhenghong, Li Shichao, Shi Yi, Fan Zhiwei
CollegeofEarthSciences,JilinUniversity,Changchun130061,China
The Liudong pluton is located in the southern Helong area of Yanbian area, the southwest segment of Gudonghe fault and north margin of Longgang block. It’s composed of monzonitic granite. Systematic researches on petrography and geochronology have been carried out to determine the emplacement age and tectonic environment of the pluton. The LA-ICP-MS zircon U-Pb dating yields the weighted mean age of (118.63±0.69) Ma and (118.58±0.87) Ma for N-6 and N-7 sample, respectively. The rock is weak peraluminous and belongs to the high potassium calc-alkaline series, characterized by high Si (70.30%-76.30%), high alkali (7.82%-8.52%), high aluminum (12.30%-15.50%) and low titanium (0.16%-0.29%), with A/CNK value of 1.03-1.11. Such geochemical characteristics asDI(87.99-94.89)andSI(2.39-5.31) indicate the rock experienced a highly fractionated evolving stage. The rock is of LREE enrichment (LREE/HREE=3.46-8.09) and HREE depletion ((La/Yb)N=10.59-33.94). The Liudong pluton is characterized by the strong enrichment in large ion lithophile elements (LILE), such as Cs, Pb, Ba, K, depletion in high field-strength elements (HESE), such as Nb, Ta, Ti, and P, and middle negative Eu anomalies (δEu = 0.63~0.92). Combining petrography, geochronology, rock geochemical characteristics, and regional geological material, it can be concluded that the Liudong pluton belongs to the highly fractionated high-potassium calc-alkaline I-type granite and emplaced in the transferring stage from a post-orogenic to an extensional tectonic setting.
geochemistry; zircon U-Pb geochronology; post-orogenic granite; Late Mesozoic period; Yanbian area
10.13278/j.cnki.jjuese.201401112.
2013-06-15
国家自然科学基金项目(40972135,41272223);中国地质调查局项目(1212011085481)
张超(1986-),男,博士研究生,主要从事构造与岩浆活动的研究,E-mail:bosewell@163.com
徐仲元(1963-),男,教授,主要从事构造地质学研究,E-mail:xuzy@jlu.edu.cn。
10.13278/j.cnki.jjuese.201401112
P588.12
A
张超,徐仲元,刘正宏,等.东北延边地区晚中生代柳洞岩体的成因:锆石U-Pb年代学和地球化学证据.吉林大学学报:地球科学版,2014,44(1):145-157.
Zhang Chao, Xu Zhongyuan, Liu Zhenghong,et al.Petrogenesis of the Late Mesozoic Liudong Pluton in Yanbian Area NE China:Evidence from Zircon U-Pb Geochronology and Geochemistry.Journal of Jilin University:Earth Science Edition,2014,44(1):145-157.doi:10.13278/j.cnki.jjuese.201401112.