免疫调节分子在肿瘤化疗敏感性调控中的研究进展*
2014-07-02吕丽宋鑫
吕丽 宋鑫
·国家基金研究进展综述·
免疫调节分子在肿瘤化疗敏感性调控中的研究进展*
吕丽 宋鑫
原发性或获得性耐药是肿瘤化疗失败的主要原因,如何逆转化疗耐药是当前肿瘤化疗研究热点。新近研究发现,免疫调节分子参与肿瘤化疗耐药,靶向干预免疫调节分子可以逆转化疗耐药,引起国内外学者的极度关注。研究已证实,免疫调节分子PD-L1、B7-H3、HMGB1、TRAIL、MyD88、细胞因子(TNF-α、IFN-α、IL-6)等在调控机体免疫功能的同时,也能调控肿瘤细胞耐药特性,为逆转肿瘤化疗耐药提供了新思路。本文就免疫调节分子在肿瘤化疗敏感性改变中的研究进展作一综述,旨在为生物化疗新方案的实施提供理论依据。
免疫调节分子 细胞因子 肿瘤 化疗耐药
恶性肿瘤严重威胁人类健康。化疗在肿瘤非手术治疗中占据核心地位,尽管化疗在多种血液肿瘤和实体瘤治疗中取得了令人瞩目的疗效,但原发性或获得性耐药仍是临床治疗面临的巨大挑战。新近研究发现,免疫调节分子PD-L1、B7-H3、HMGB1、TRAIL、MyD88、细胞因子TNF-α、IFN-α、IL-6等在调节机体抗肿瘤免疫的同时,还参与调控肿瘤化疗耐药,靶向干预免疫调节分子可以逆转化疗耐药,为肿瘤患者综合治疗方案的发展带来较大的影响。本文针对免疫调节分子在抗肿瘤免疫调节和化疗耐药中的研究进展进行综述,以期为患者化疗耐药后靶向免疫调节治疗提供新的治疗方法和途径。
1 B7家族成员
1.1 负性调节分子PD-L1
程序性死亡配体-1(programmed death1-ligand,PD-L1)属于B7家族成员,又名B7-H1、CD274,是T细胞的抑制性分子,可保护肿瘤细胞抵抗来自免疫的攻击,主要表达于T、B淋巴细胞、树突状细胞等非造血细胞表面,其受体为CD28家族成员程序性死亡受体-1(programmed cell death-1,PD-1)。PD-L1与PD-1相互作用后可抑制T细胞增殖及细胞因子(IFN-γ、IL-2等)的分泌,加速效应性T淋巴细胞凋亡及功能衰竭,介导肿瘤免疫逃逸[1]。新近研究发现,PD-L1作为负性调节分子,不仅在肿瘤免疫逃逸中发挥重要作用,而且高表达于肺癌[2]、乳腺癌[3]等肿瘤,与临床分期及预后紧密相关,逐渐成为肿瘤免疫和肿瘤临床研究热点。
令人感兴趣的是,PD-L1不但参与肿瘤免疫逃逸,而且与化疗药物敏感性紧密相关。在乳腺癌细胞系中,沉默PD-L1后可增强阿霉素介导的肿瘤细胞凋亡[4];在淋巴瘤细胞中,抑制PD-L1的表达可逆转肿瘤细胞对顺铂的耐药,进而在动物实验中发现,PD-L1 RNAi联合顺铂作用于荷瘤小鼠可抑制肿瘤细胞生长,显著增强荷瘤小鼠的抗肿瘤活性并延长其总生存期[5]。此外,在胰腺癌小鼠模型中,PD-L1单抗可明显增加吉西他滨的抗肿瘤疗效[6]。由上可见,PD-L1与肿瘤化疗敏感性存在一定关联,然而,PD-L1介导肿瘤细胞化疗耐药分子机制至今尚未阐明,可能与细胞凋亡抑制途径有关,也可能因产生耐药蛋白或DNA损伤修复功能的改变等引起,还需进一步研究。
目前,PD-L1抑制剂BMS-936559/MDX-1105、MPDL-3280A作为靶向治疗药物已进入Ⅰ/Ⅱ期临床试验,然而,PD-L1单抗在肿瘤耐药中的作用尚处于初期研究阶段,靶向阻断PD-L1逆转肿瘤化疗耐药极有可能成为未来肿瘤耐药治疗新的突破口。
1.2 共刺激分子B7-H3
B7同源物3(B7-homologue 3,B7-H3)为B7家族新成员,又名CD276,属于I型跨膜糖蛋白。B7-H3在正常组织中表达极其微弱,然而通过佛波酯和离子霉素体外刺激可在激活的B细胞、自然杀伤(natural killer,NK)细胞和T细胞上高表达。B7-H3在胰腺癌、结直肠癌、非小细胞肺癌等多种肿瘤组织中显著高表达,导致T细胞活性下调[7]。在肿瘤组织中,B7-H3通过与T细胞或抗原提呈细胞的受体结合可抑制T细胞增殖,与NK细胞表达的抑制性受体结合,可发挥负性调节作用,使肿瘤细胞逃逸NK细胞介导的杀伤作用[8]。
新近研究发现,负性调节分子B7-H3参与肿瘤细胞化疗耐药,靶向干预B7-H3可以逆转化疗耐药。在乳腺癌研究中,下调B7-H3可增加乳腺癌细胞系对紫杉醇的敏感性,而过表达B7-H3可诱导紫杉醇耐药;在裸鼠移植瘤模型中,B7-H3敲除的乳腺癌细胞生长速度明显减慢,并且紫杉醇对B7-H3敲除肿瘤具有更强的抗瘤活性[9]。最新研究发现,紫杉醇治疗增加卵巢癌细胞B7-H3表达,用靶向B7-H3的鼠单克隆抗体376.96处理紫杉醇或铂类耐药的卵巢癌细胞系,可抑制肿瘤细胞生长并导致细胞活力下降;此外,B7-H3单抗376.96可以增强舒尼替尼对肿瘤起始细胞的杀伤作用[10]。因此,B7-H3是肿瘤免疫治疗的有效靶点,针对B7-H3的靶向药物不仅可以抑制肿瘤生长,而且具有逆转肿瘤化疗耐药作用,需要更多的研究推动B7-H3单抗的临床应用转化。
2 新型自噬调节因子HMGB1
高迁移率族蛋白-B1(high mobility group box-1,HMGB1)是第一个被证实的能与DNA结合并能改变DNA螺旋结构的非组蛋白,由215个氨基酸残基组成,属于HMG超家族成员之一。胞内HMGB1是一种重要的结构蛋白,参与核小体构建、DNA修复等功能;胞外HMGB1作为一种晚期炎性递质,与多种自身免疫性疾病的发病机制密切相关[11]。在肿瘤研究中,HMGB1在恶性黑色素瘤、骨肉瘤、胃癌、结直肠癌等多种实体肿瘤中高表达,与肿瘤的病灶大小、淋巴转移等密切相关[12-13]。
新近研究发现,HMGB1可调节细胞自噬,介导肿瘤细胞化疗耐药。在骨肉瘤中,用阿霉素、顺铂和氨甲喋呤等作用于骨肉瘤细胞发现HMGB1显著上调,呈时间依赖性,敲除HMGB1可恢复其对化疗药物的敏感性[14]。进一步研究发现,HMGB1可被miR-22靶向调控,通过自噬介导骨肉瘤化疗耐药[15]。另有研究显示,HMGB1主要通过结合自噬调节基因Beclin1调节Beclin1-PI3KC3复合物的形成,介导细胞自噬,进而促进肿瘤细胞化疗耐药[16]。综上所述,HMGB1是介导肿瘤化疗耐药的关键分子,主要通过自噬调节肿瘤化疗敏感性,可作为逆转肿瘤耐药的干预靶标。目前HMGB1靶向药物已进入临床前研究,如HMGB1中和抗体等,前景值得期待。
3 肿瘤坏死因子超家族TRAIL
肿瘤坏死因子相关凋亡诱导配体(tumor necrosis factor-related apoptosis-inducing ligand,TRAIL)又称凋亡素-2配体,为Ⅱ型跨膜蛋白,主要通过与细胞膜上的死亡受体结合而激活凋亡信号途径。研究发现,TRAIL在乳腺癌[17]、膀胱癌[18]、卵巢癌[19]等多种肿瘤中高表达,与死亡受体相互作用诱导肿瘤细胞凋亡。James等[20]在肾癌研究中发现,肿瘤原位注射腺病毒编码的鼠TRAIL(Ad5mTRAIL)联合CpG寡脱氧核苷酸治疗,可使小鼠产生全身性抗肿瘤免疫反应,消除原发肿瘤和肺转移肿瘤。TRAIL因具有诱导肿瘤细胞凋亡的作用,被广泛应用于抗肿瘤治疗研究中,极具开发潜力。
进一步研究发现,TRAIL同时也参与肿瘤多药耐药。Cuello等[21]在卵巢癌研究中发现,TRAIL联合顺铂、紫杉醇、阿霉素等化疗药物可明显增加耐药卵巢癌细胞的凋亡。另一项研究发现,TRAIL与顺铂联合应用,可提高卵巢癌细胞化疗敏感性[22]。令人感兴趣的是,TRAIL对P-gP介导的多药耐药肿瘤具有独特治疗作用,如在白血病、乳腺癌和卵巢癌中,TRAIL能下调P-gP的表达,进而逆转肿瘤耐药[23,24]。上述研究表明,TRAIL可逆转肿瘤多药耐药,与化疗药物联合可发挥协同增效作用。目前,TRAIL用于恶性肿瘤的治疗已经进入Ⅰ/Ⅱ期临床试验阶段,然而其介导的逆转肿瘤化疗耐药机制还处于探索阶段,需要更深入的研究。
4 Toll样受体信号通路分子MyD88
髓样分化因子88(myeloid differentiation factor 88,MyD88)为Toll样受体(TLRs)信号通路中关键的接头分子,可引起多种炎性因子(IL-1、IL-6等)的释放,介导人体固有免疫。MyD88在肿瘤免疫中的作用存在争议。在胃癌中,MyD88的缺失可促进幽门螺杆菌诱发的胃癌进展[25]。而在小鼠皮肤乳头状瘤和纤维肉瘤化学诱癌模型中,MyD88阳性者肿瘤成瘤率显著高于MyD88阴性者[26]。MyD88在肿瘤免疫研究中作用各异,其内在作用机制仍需进一步研究。
值得关注的是,MyD88不仅是重要的促炎细胞因子,新近研究发现MyD88还参与肿瘤化疗耐药。Kelly等[27]在卵巢癌中率先发现MyD88的表达与紫杉醇的耐药性紧密相关。随后,在原发性和复发性上皮性卵巢癌中发现,接受卡铂联合紫杉醇治疗的MyD88阳性患者无进展生存期(PFS)和总生存期(OS)明显短于MyD88阴性肿瘤患者[28]。进一步研究发现,阻断MyD88通路可明显增强上皮性卵巢癌细胞对紫杉醇的敏感性[29]。总之,TLR信号通路的关键分子MyD88是调节肿瘤化疗耐药的重要分子,有望成为逆转化疗耐药的新型靶点。
5 调节耐药的重要细胞因子
5.1 TNF-α
肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)为体内重要的炎性因子,不但在炎症反应中发挥重要作用,同时在肿瘤耐药方面也扮演重要角色。一种观点认为,TNF-α具有逆转肿瘤耐药的作用。将人TNF-α基因转染至胶质瘤细胞中可降低细胞P-gp表达,增强多药耐药细胞系对长春新碱和阿霉素的敏感性[30]。人肝癌耐药细胞株中,Bcl-2表达明显增高,转染TNF-α后可显著降低Bcl-2表达,从而促进化疗药物对肿瘤细胞的凋亡,起到一定的逆转耐药作用[31]。然而,另一种观点认为,TNF-α也会促进肿瘤化疗耐药。Tsubaki等[32]发现,抑制TNF-α可增强抗癌药物在多发性骨髓瘤细胞系中的敏感性,这种机制是通过抑制TNF受体/mTOR/NF-κB途径引起。在乳腺癌中,化疗药物多柔比星和环磷酰胺刺激内皮细胞和其他基质细胞产生TNF-α,TNF-α通过NF-κB提高CXCL1/2的表达,进而扩增CXCL1/2-S100A8/9环引起化疗耐药[33]。
由于TNF-α在人类肿瘤中的作用存在争议,故关于TNF-α在肿瘤中的治疗还需进一步深入研究。目前,TNF-α联合化疗药物治疗黑色素瘤、肉瘤和肝癌等已取得较好的疗效。同时,TNF-α抑制剂如英利昔单抗和依那西普也成功应用于多种自身免疫性疾病治疗[34],然而关于TNF-α抑制剂治疗肿瘤的报道很少,尚处于探索阶段。
5.2 IFN-α
α-干扰素(alpha-interferon,IFN-α)属于I型干扰素,具有抗病毒、诱导分化及调节免疫等多种生物学作用。近年研究显示,IFN-α还可增强肿瘤细胞对化疗药物的敏感性,主要通过增加肿瘤细胞内化疗药物浓度、加速肿瘤细胞凋亡等方式,逆转化疗耐药[35],成为人们研究的热点。Ben等[36]在小鼠Lewis肺癌研究中发现,IFN-α可增加肿瘤细胞对多西紫杉醇(DTX)的吸收,并可增强DTX的抗肿瘤和抗转移作用;进一步研究证实,IFN-α可降低多药耐药骨肉瘤细胞系中P-gp的表达,从而降低P-gp的“泵药”作用,显著增加耐药细胞对阿霉素的敏感性[37]。此外,Caspase-8是IFN-α的靶基因,IFN-α治疗可增加肝癌细胞中Caspase-8的表达,从而促进细胞凋亡[38]。由上可见,IFN-α联合化疗在肿瘤治疗中具有较好的增敏作用。目前,IFN-α已广泛用于恶性黑色素瘤、肾细胞癌、肝癌、白血病等的临床治疗,但是IFN-α作为化疗辅助用药,用于逆转化疗耐药的研究才刚刚起步。
5.3 IL-6
白介素-6(interleukin-6,IL-6)是肿瘤微环境中的主要免疫调节因子,主要参与调节免疫应答,并且在肿瘤微环重建和肿瘤转移中发挥重要作用。研究发现,乳腺癌患者血清IL-6高表达,与肿瘤分期,淋巴结浸润,肿瘤复发和患者预后不良相关[39],提示IL-6是肿瘤进展的关键分子。
此外,IL-6还与肿瘤对化疗药物的敏感性密切相关[40]。在骨髓瘤中,阻断IL-6信号通路可增加其对硼替佐米的敏感性[41];在紫杉醇敏感的骨肉瘤细胞中导入IL-6 cDNA,可使骨肉瘤细胞对化疗药物的抵抗性增加[42]。在肺癌中,化疗药物可增加IL-6的表达,激活ATM/NF-κ T通路,使ABCG2、Bcl-2、Mcl-1和Bcl-xl的表达增加,促进肺癌细胞多重耐药[40]。另有研究发现,IL-6也可以通过AMPK/mTOR途径调节自噬促进肿瘤化疗耐药[43]。上述研究表明,抑制或减少肿瘤细胞分泌IL-6,可不同程度地逆转肿瘤化疗耐药。
6 调节耐药的潜在免疫调节分子
随着肿瘤微环境和肿瘤免疫治疗的深度发展,参与调控肿瘤化疗敏感性的免疫分子不断被发现,并逐渐成为肿瘤耐药机制和肿瘤免疫治疗研究的新导向。越来越多的研究表明,肿瘤组织中部分免疫调节分子在诱导肿瘤免疫耐受的基础上,也促进或者减弱肿瘤化疗耐药能力,如细胞因子IL-1β[44]、B7家族分子PD-L2[45]等,均在肿瘤化疗敏感性中发挥重要作用,逐渐成为新的研究热点。
7 小结和展望
化疗耐药一直是制约肿瘤化疗发展的瓶颈问题。随着对肿瘤化疗耐药研究的不断深入,大量研究结果发现免疫调节蛋白在肿瘤化疗耐药中发挥至关重要的作用,基于免疫调节蛋白为靶点的治疗将为肿瘤化疗耐药的防治提供了新的思路。然而,大部分免疫调节蛋白介导的免疫应答及介导肿瘤耐药的机制尚未完全阐明。目前对免疫调节分子逆转肿瘤耐药的相关研究尚缺乏系统的论证,很多免疫调节蛋白尚处于耐药细胞系的研究领域,相信随着对免疫调节蛋白与肿瘤化疗耐药两者相关性认识的不断加深,以免疫调节蛋白为靶点的治疗药物将为肿瘤化疗耐药患者带来福音。
1 Riella LV,Paterson AM,Sharpe AH,et al.Role of the PD-1 pathway in the immune response[J].Am J Transplant,2012,12(10):2575-2587.
2 Creelan BC.Update on immune checkpoint inhibitors in lung cancer[J].Cancer Control,2014,21(1):80-89.
3 Schalper KA.PD-L1 expression and tumor-infiltrating lymphocytes:Revisiting the antitumor immune response potential in breast cancer[J].Oncoimmunology,2014,3:e29288.
4 Ghebeh H,Lehe C,Barhoush E,et al.Doxorubicin downregulates cell surface B7-H1 expression and upregulates its nuclear expression in breast cancer cells:role of B7-H1 as an anti-apoptotic molecule[J].Breast Cancer Res,2010,12(4):R48.
5 Li Y,Wang J,Li C,Ke XY.Contribution of PD-L1 to oncogenesis of lymphoma and its RNAi-based targeting therapy[J].Leuk Lymphoma,2012,53(10):2015-2023.
6 Nomi T,Sho M,Akahori T,et al.Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer[J].Clin Cancer Res, 2007,13(7):2151-2157.
7 Zielke N,Kim KJ,Tran V,et al.Control of Drosophila endocycles by E2F and CRL4(CDT2)[J].Nature,2011,480(7375):123-127.
8 Bottino C,Dondero A,Bellora F,et al.Natural killer cells and neuroblastoma:tumor recognition,escape mechanisms,and possible novel immunotherapeutic approaches[J].Front Immunol,2014,5:56.
9 Liu H,Tekle C,Chen YW,et al.B7-H3 silencing increases paclitaxel sensitivity by abrogating Jak2/Stat3 phosphorylation[J].Mol Cancer Ther,2011,10(6):960-971.
10 Fauci JM,Sabbatino F,Wang Y,et al.Monoclonal antibody-based immunotherapy of ovarian cancer:targeting ovarian cancer cells with the B7-H3-specific mAb 376.96[J].Gynecol Oncol,2014,132 (1):203-210.
11 Naglova H,Bucova M.HMGB1 and its physiological and pathological roles[J].Bratisl Lek Listy,2012,113(3):163-171.
12 Srinivasan M,Banerjee S,Palmer A,et al.HMGB1 in hormone-related cancer:a potential therapeutic target[J].Horm Cancer,2014,5 (3):127-139.
13 Sun X,Tang D.HMGB1-dependent and-independent autophagy [J].Autophagy,2014,10(10):1873-1876.
14 Huang J,Liu K,Yu Y,et al.Targeting HMGB1-mediated autophagy as a novel therapeutic strategy for osteosarcoma[J].Autophagy, 2012,8(2):275-257.
15 Li X,Wang S,Chen Y,et al.miR-22 targets the 3'UTR of HMGB1 and inhibits the HMGB1-associated autophagy in osteosarcoma cells during chemotherapy[J].Tumour Biol,2014,35(6):6021-6028.
16 Huang J,Ni J,Liu K,et al.HMGB1 promotes drug resistance in osteosarcoma[J].Cancer Res,2012,72(1):230-238.
17 Turner A,Li LC,Pilli T,et al.MADD knock-down enhances doxorubicin and TRAIL induced apoptosis in breast cancer cells[J]. PLoS One,2013,8(2):e56817.
18 Szliszka E,Czuba ZP,Kawczyk-Krupka A,et al.Chlorin-based photodynamic therapy enhances the effect of tumor necrosis factor-related apoptosis-inducing ligand(TRAIL)in bladder cancer cells[J].Med Sci Monit,2012,18(1):BR47-53.
19 Cho SH,Park MH,Lee HP,et al.(E)-2,4-Bis(p-hydroxyphenyl)-2-butenal enhanced TRAIL-induced apoptosis in ovarian cancer cells through downregulation of NF-kappaB/STAT3 pathway[J].Arch Pharm Res,2014,37(5):652-661.
20 James BR,Griffith TS.Activation of systemic antitumor immunity via TRAIL-induced apoptosis[J].OncoImmunology,2012,1(7):1178-1180.
21 Cuello M,Ettenberg SA,Nau MM,et al.Synergistic induction of apoptosis by the combination of trail and chemotherapy in chemoresistant ovarian cancer cells[J].Gynecol Oncol,2001,81(3):380-390.
22 Siervo-Sassi RR,Marrangoni AM,Feng X,et al.Physiological and molecular effects of Apo2L/TRAIL and cisplatin in ovarian carcinoma cell lines[J].Cancer Lett,2003,190(1):61-72.
23 Kim D-Y,Kim M-J,Kim H-B,et al.Suppression of multidrug resistance by treatment with TRAIL in human ovarian and breast cancer cells with high level of c-Myc[J].Biochim Biophys Acta, 2011,1812(7):796-805.
24 Park SJ,Bijangi-Vishehsaraei K,Safa AR.Selective TRAIL-trig-gered apoptosis due to overexpression of TRAIL death receptor 5 (DR5)in P-glycoprotein-bearing multidrug resistantCEM/ VBL1000 human leukemia cells[J].Int J Biochem Mol Biol,2010,1 (1):90-100.
25 Banerjee A,Thamphiwatana S,Carmona EM,et al.Deficiency of the myeloid differentiation primary response molecule MyD88 leads to an early and rapid development of Helicobacter-induced gastric malignancy[J].Infect Immun,2014,82(1):356-363.
26 Swann JB,Vesely MD,Silva A,et al.Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis[J].Proc Natl Acad Sci U S A,2008,105(2):652-656.
27 Kelly MG,Alvero AB,Chen R,et al.TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer[J]. Cancer Res,2006,66(7):3859-3868.
28 Silasi DA,Alvero AB,Illuzzi J,et al.MyD88 predicts chemoresistance to paclitaxel in epithelial ovarian cancer[J].Yale J Biol Med, 2006,79(3-4):153-163.
29 Huang JM,Zhang GN,Shi Y,et al.Atractylenolide-I sensitizes human ovarian cancer cells to paclitaxel by blocking activation of TLR4/MyD88-dependent pathway[J].Sci Rep,2014,4:3840.
30 Walther W,Stein U,Pfeil D.Gene transfer of human TNF alpha into glioblastoma cells permits modulation of mdr1 expression and potentiation of chemosensitivity[J].Int J Cancer,1995,61(6):832-839.
31 Ding L,Chen XP,Zhang ZW,et al.Study on sensitivity to chemotherapy by combination therapy with tumor necrosis factor-alpha and bromocriptine in the multidrug resistant subcell line of HepG2 [J].Zhonghua Wai Ke Za Zhi,2006,44(23):1644-1647.
32 Tsubaki M,Komai M,Itoh T,et al.Inhibition of the tumour necrosis factor-alpha autocrine loop enhances the sensitivity of multiple myeloma cells to anticancer drugs[J].Eur J Cancer,2013,49(17):3708-3717.
33 Acharyya S,Oskarsson T,Vanharanta S,et al.A CXCL1 paracrine network links cancer chemoresistance and metastasis[J].Cell,2012, 150(1):165-178.
34 Willrich MA,Murray DL,Snyder MR.Tumor necrosis factor inhibitors:clinical utility in autoimmune diseases[J].Transl Res,2014,pii:S1931-5244(14)00312-0.doi:10.1016/j.trsl.2014.09.006.[Epub ahead of print]
35 Lee J,Jung HH,Im YH,et al.Interferon-alpha resistance can be reversed by inhibition of IFN-alpha-induced COX-2 expression potentially via STAT1 activation in A549 cells[J].Oncol Rep,2006,15 (6):1541-1549.
36 Ben Reguiga M,Bouquet C,Farinotti R,et al.Interferon-alpha improves docetaxel antitumoral and antimetastatic efficiency in Lewis lung carcinoma bearing mice[J].Life Sci,2012,91(17-18):843-851.
37 Manara MC,Serra M,Benini S,et al.Effectiveness of Type I interferons in the treatment of multidrug resistant osteosarcoma cells[J]. Int J Oncol,2004,24(2):365-372.
38.Liedtke C,Groger N,Manns MP,et al.Interferon-alpha enhances TRAIL-mediated apoptosis by up-regulating caspase-8 transcription in human hepatoma cells[J].J Hepatol,2006,44(2):342-349.
39 Cho YA,Sung MK,Yeon JY,et al.Prognostic role of interleukin-6, interleukin-8,and leptin levels according to breast cancer subtype [J].Cancer Res Treat,2013,45(3):210-219.
40 Yan HQ,Huang XB,Ke SZ,et al.Interleukin 6 augments lung cancer chemotherapeutic resistance via ataxia-telangiectasia mutated/ NF-kappaB pathway activation[J].CancerSci,2014,105(9):1220-1227.
41 Voorhees PM,Chen Q,Kuhn DJ,et al.Inhibition of interleukin-6 signaling with CNTO 328 enhances the activity of bortezomib in preclinical models of multiple myeloma[J].Clin Cancer Res,2007, 13(21):6469-6478.
42 Duan Z,Lamendola DE,Penson RT,et al.Overexpression of IL-6 but not IL-8 increases paclitaxel resistance of U-2OS human osteosarcoma cells[J].Cytokine,2002,17(5):234-242.
43.Chang PC,Wang TY,Chang YT,et al.Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells[J].PLoS One,2014,9(2):e88556.
44 Muerkoster S,Wegehenkel K,Arlt A,et al.Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1beta[J].Cancer Res,2004,64(4):1331-1337.
45 Yang H,Bueso-Ramos C,DiNardo C,et al.Expression of PD-L1, PD-L2,PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents[J].Leukemia, 2014,28(6):1280-1288.
(2014-09-21收稿)
(2014-11-12修回)
(本文编辑:郑莉)
Progression of immunomodulatory molecules in the change of cancer chemotherapy sensitivity
Li LV,Xin SONG
Department of Cancer Biotherapy Center,The ThirdAffiliated Hospital of Kunming Medical University,Kunming 650118,China
Xin SONG;E-mail:songxin68@126.com
Intrinsic or acquired chemo-resistance is the main reason for chemotherapy failure,and thus finding ways to reverse chemo-resistance has become an interesting topic for research.Studies have revealed that immunomodulatory molecules are involved in cancer chemo-resistance.Hence,interventions that target immunomodulatory molecules to reverse chemo-resistance have attracted a great deal of concern from domestic and foreign scholars.Immunomodulatory molecules,such as PD-L1,B7-H3,HMGB1,TRAIL, MyD88,and Cytokines(TNF-α,IFN-α,IL-6),have been proven to take part in regulating immune function and tumor drug-resistance characteristics,thereby providing new ideas to the reversal of tumor chemo-resistance.This artide reviews the progression of immunomodulatory molecules with the change in cancer chemotherapy sensitivity to provide a theoretical basis for the application of new therapeutic regimen of bio-chemotherapy.
immunomodulatory molecules,cytokines,tumor,chemo-resistance
10.3969/j.issn.1000-8179.20141608
昆明医科大学第三附属医院云南省肿瘤医院生物治疗中心(昆明市650118)
*本文课题受国家高技术研究发展计划(863计划)资助项目(编号:2012AA02A201)、国家自然科学基金项目(编号:81060185、81260307、81470005)、国家卫计委肿瘤科国家临床重点专科项目(2013-2014)、云南省高层次卫生技术人才-领军人才项目(编号:L-201213)、云南省应用基础研究面上项目(编号:2012FB069)与云南省教育厅科学研究基金项目(编号:2013J048)资助
宋鑫 songxin68@126.com
This work was supported by the National High-Tech.R&D Program,China(No.2012AA02A201),the National Natural Science
Foundation of China(Nos.81060185,81260307,81470005),the National Clinical Key Specialty Construction Projects of Oncology of National Health and Family Planning Commission of China(No.Awarded to the Tumor Hospital of Yunnan Province: 2013-2014),the Yunnan Province of High-level Health Technicians-Leading Talent(No.L-201213),the Surface Applied Basic Research Projects in Yunnan(No.2012FB069),and the Yunnan Provincial Department of Education Fund for Scientific Research Project(No.2013J048).
吕丽 专业方向为肿瘤生物治疗与耐药相关性研究。
E-mail:lvlilvli163@163.com