简论数学学习与数学课程改革
2014-06-23赵德华
赵德华
贵州省威宁彝族回族苗族自治县第二中学
简论数学学习与数学课程改革
赵德华
贵州省威宁彝族回族苗族自治县第二中学
数学本身具有的应用价值、文化价值和智力价值,确立了它在学校课程中总是占据重要地位。认识数学学习、数学课程的内涵及彼此的关系,显得极为重要。处理好“数学学问逻辑”向“学科数学逻辑”的转化,实现数学知识结构、认知结构、心理结构的和谐统一。
改革;教育;数学
一、数学学习
人类的数学学习活动,从最初的结绳记数等自然经验的积累,演变成以班级授课形式为主的学校数学教育,已有数千年历史。然而,关于数学学习的基本理论的研究,诸如数学学习的实质是什么?数学学习有何特点?学生在其学习过程中表现出哪些心理规律?影响学生数学学习的因素分析等等,并没有形成一种共识,亟待更深入地研究和探索。
(一)数学学习的实质
数学学习的实质,牵涉到两个更为重要的问题:一是数学学习的对象——数学的本质是什么?二是数学学习作为一类学习活动——学习的实质是什么?前一个问题,是数学哲学的元问题,有着许多不同观点。如“纯数学的对象是现实世界的空间形式和数量关系”,“数学研究现实世界和人类经验各方面的各种形式模型的构造”,“数学是研究广义的量(即模式结构形式)的学科”等等。学习的本质问题,则是各种学习理论分野的焦点,这方面,具有代表性的是以桑代克、华生、斯金纳等为代表的行为主义(或联想主义)学习理论和以格式塔、托尔曼、布鲁纳等为代表的认知学习理论。在行为派看来,学习的实质就是学习者通过经典性条件反射或者操作性条件反射的形成而获得经验的过程,即刺激与反应之间的联结。在认知派看来,学习过程不是简单地在强化条件下形成刺激与反应的联结,而是学习者积极主动地形成新的完形或认知结构的过程,即学习是一种积极主动的内部加工过程。随着两大学派的争论和研究的深入,任何一派都无法涵盖对方,都无法解释一切学习。
(二)数学学习的特点
数学自身的特点,决定了数学学习是人类学习活动中的一种特殊活动。数学学习需要学生有较强的逻辑思维能力、形象思维能力和直觉思维能力,用来处理多级抽象概括的数学知识经验,进行形式符号语言的运算推理。学生数学学习的思维方式,往往是“理论—实践—理论”的模式,与数学家的思维模式相比,必须经历逆转的心理过程。
二、数学课程
我认为,数学课程是对学校数学教育内容、标准和进度的总体安排和设计。它是联结教师、学生的桥梁。教师按课程的规定,为学生获得数学知识经验、个性发展提供最有效的途径与方法,学生则根据课程规定的数学内容、标准、进度进行学习。因此,数学课程反映着学生在教师指导下进行的一切数学学习活动。
制约数学课程建设的因素是多方面的,大致有社会因素、数学因素、学生因素、教师因素、教育理论因素、课程的发展史因素。如果从中小学数学教育的出发点与归宿来看,数学课程建设是为了学生的个性发展,这种发展不是绝对自由的,而是在满足社会需要前提下实现的。学生的个性发展源于成熟与学习。成熟多受遗传的禀赋和潜能所支配,学习则是个体从环境中所获得的变化,主要受个人的教养和境遇所影响。学校数学教育给学生提供了数学学习的环境,数学课程在这种环境中起着“中介”和“方案”作用。
三、从数学学习看数学课程改革
(一)数学课程改革的历史教训
本世纪60年代世界范围内流行的学问中心数学课程,是基于对学生数学学习这样的认识建立的,即数学家的认识过程与学生的学习过程的逻辑是同质的,其间的差异只是程度的问题。数学家的研究逻辑与学生的数学学习逻辑被认为是:第一,数学家的认知方式与未成熟学生的数学认知方式所显示的不同,不是种类上而仅仅是程度上的差异,两者都经历着探究——发现学习的过程;第二,智力活动在一切方面都是同一的。数学家的智力、兴趣与追求,对于任何年龄阶段的学生来说,都可以认为是适当的。于是,学问中心数学课程编制的基本准则是:依据数学科学的基本结构编制内容,体现数学的结构化、形成化、统一性和现代化。上述思想忽视了儿童思维方式的质与成人有差异。皮亚杰等人的研究成果表明,青少年心智成长是阶段性发展的,在其成熟过程中,经验起着质的变化。因此,学问中心数学课程注定是要失败。70年代,它受到抨击,被认为使学生“非人性化”,妨碍了“完整人格”的实现。数学课程也随大流,走向人本主义化,以学生能力的全域发展为目的。
人本主义数学课程的目标是将学生的数学认知发展和情意发展(情绪、感情、态度、价值等)统一起来,数学课程采用知识课程与体验课程或情意课程与体验课程的多层结构。它以马斯洛的理论为其心理学基础,企图将抽象的数学演绎过程转变为经验的归纳的学习过程。然而,这种理想化课程并没有提高学校数学教育质量,过分强调尊重人的价值、忽视学生数学学习的规律,造成了学生学习能力低下。???
(二)从数学学习看数学课程标准
数学课程标准是对各个特定阶段(如初中、高中)学生数学学习目标的规定,它体现着数学教育的目标。这些规定,必须考虑学生达到该学段时已有的数学知识经验、数学认知发展水平、数学思维的发展水平与特点,以及学生在教师的指导下以上方面可达到的水平。不同民族、不同环境下成长的学生,在思维发展顺序上同一,但达到各阶段的时间有差异。从数学概括能力、空间想象能力、数学命题能力和逻辑推理能力几方面发展的研究表明,我国中学生在初中二年级是中学阶段思维发展的关键期,从初中二年级开始,他们的抽象逻辑思维开始由经验型水平向理论型水平转化,到高中二年级,这种转化初步完成,已“初步定型”或成熟。数学课程标准的确定,必须考虑这些特点。