APP下载

琼西南三叠纪基性岩脉年代学、地球化学特征及其构造意义

2014-06-07陈新跃王岳军韩会平张玉芝温淑女曹有金

关键词:印支基性岩海南岛

陈新跃,王岳军,韩会平,张玉芝,温淑女,曹有金

1.湖南科技大学地质系,湖南 湘潭 411201

2.页岩气资源利用湖南省重点实验室,湖南 湘潭 411201

3.中国科学院广州地球化学研究所,广州 510640

4.中国石油长庆油田分公司,西安 710018

0 引言

基性岩脉作为地幔信息的重要载体,对研究区域大地构造演化具有重要意义。对基性岩脉的精确同位素定年和元素地球化学研究可以限定构造演化时序,并能为岩石圈演变提供制约[1-6]。海南岛地处华南地块与印支地块之间,具有复杂的地质构造演化历史[7-9],是联系和理解印支半岛和华南陆块构造演化的重要地区之一(图1)。然而,对海南基底属性及其构造区划尚有争议[7,10-18],如:杨树锋等[10]以九所-陵水断裂为界将海南岛划分为崖县和琼中南、北两个块体;Hsü等[11]和陈海泓等[12]将海南岛作为华南块体与印支块体之间的中生代造山带,石碌群为构造混杂岩;Metcalfe[13]则以白沙断裂为界,划分成东南和西北两个块体;夏邦栋等[14]及方中等[15]认为东西向昌江-琼海断裂为一古生代裂谷;李献华等[7,16]将邦溪-晨星蛇绿岩带作为华南块体与印支块体的缝合带。目前对海南海西-印支期(晚古生代-早中生代)花岗岩的研究取得了很大进展[19-25],如:Li等[20]和陈新跃等[18]在琼中五指山地区发现260~270Ma的同碰撞变形花岗岩[18,20];谢才富等[24]在三亚地区发现244Ma的石榴霓辉石正长岩等。但对与海南早中生代构造演化密切相关的基性岩的研究则少见报导[26]。笔者将系统报道海南东方中沙基性岩脉的锆石U-Pb年龄和元素地球化学特征,以期为理解海南早中生代岩石圈构造属性及其与华南、印支的碰撞历史提供新的信息。

1 区域地质和样品岩石学特征

海南岛以琼州海峡与华南大陆相隔,由北向南发育有王五-文教、昌江-琼海、尖峰-吊罗、九所-陵水等4条近EW向隐伏断裂[27];由西向东发育NE向戈枕断裂和白沙断裂[14,21-23](图1)。岛内出露地层主要有元古宇抱板群和石碌群、古生界和中生界[28-29]。抱板群和石碌群由高绿片岩相-角闪岩相变质岩组成,是海南出露最老的地层,主要分布于海南中 西 部 地 区[21-22,27,30]。 其 中:侵 入 有 1.43Ga的花岗岩体,被认为是海南最古老的结晶基底[31];寒武系和奥陶系分布于昌江-琼海断裂以南,由一套浅变质页岩、砂岩、粉砂岩、板岩组成[22-23,32-34],岛内仅发育下志留统浅海相砂岩[35-37];上古生界包括泥盆系砂岩、石炭系板岩和变火山岩、下二叠统灰岩和中二叠统砂岩等,主要分布于九所-陵水断裂以北[22-23,35-37]。海南 岛 内 花 岗 岩 出 露 非 常 广 泛,乐 东-五指山-万宁地区出露面积约800km2的中二叠世同碰撞强变形花岗岩[18,20](260~270Ma,图1),而其他变形花岗岩可能形成于格林威尔期[31]。未变形花岗岩主要为三叠纪 (186~244Ma,如琼中岩体和儋县岩体)和燕山期(150~60Ma,如屯昌岩体等)花岗岩[22-25,38]。

海南东部万宁地区发现有辉长辉绿岩脉,其形成年龄为240Ma[26]。在西部东方中沙农场同样发育有基性岩脉(图1),这些基性岩脉没有明显变形,呈灰绿色,宽度为0.3~1.5m,呈近南北走向,与围岩面理大角度截交,产状近直立,侵入于早古生代志留纪强变形砂岩中(图2a)。其中志留系砂岩强烈面理化,面理走向北西,产状235°∠32°,其同构造期黑云母 Ar-Ar年龄约为245Ma[17,39],代表了印支构造事件的变形年龄。海南中沙基性岩脉岩性为辉长辉绿岩,主要由斜长石、单斜辉石和少量角闪石组成(图2b)。其中,斜长石呈板状,体积分数为70%,单斜辉石体积分数为22%,角闪石体积分数为5%,另见少量的斜方辉石和钛铁矿,副矿物包括磷灰石、榍石和锆石等。

2 样品分析方法

图1 海南岛地质简图Fig.1 Simplified geological map of Hainan Island

图2 基性岩脉野外照片(a)和岩石显微照片(b)Fig.2 Field photographs(a)and photomicrographs(b)of basic dikes

通过人工重砂法从新鲜的样品中分选出锆石,在双目显微镜下挑选出无裂隙、无包体、透明干净的自形锆石颗粒,将其与一片RSES参考样SL13及数粒标准锆石Temora(年龄为417Ma)在玻璃板上用环氧树脂固定、抛光,再进行反射光和透射光照相,并进行BSE图像分析以检查锆石内部的结构。所有用于定年的锆石均为透明-半透明柱状矿物,内部具明显的岩浆振荡环带,与岩浆成因锆石相似。锆石U-Pb同位素分析在香港大学的VGPQ-Excel ICP-MS激光离子探针完成,激光剥蚀系统为213 nm Nd-YAG。207Pb/206Pb和206Pb/238U 计算采用GLITTER 4.0程序[40]。详细的分析步骤和数据处理方法见文献[41]。

全岩的主量元素分析在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成。主量元素分析是用Rigaku RIX 2000型荧光光谱仪(XRF)分析,分析精度为1%~5%,具体的实验流程见文献[42]。微量元素分析在中国科学院地球化学研究所用电感耦合等离子体质谱仪(ICP-MS)完成,对质量分数>10×10-6的元素分析误差小于5%,质量分数=10×10-6的元素分析误差小于8%,具体的样品制备方法和分析流程见文献[43]。

3 LA-ICP-MS锆石 U-Pb年代学

分析的锆石取自海南中沙农场基性岩脉样品11HN31A,CL图像显示锆石形态完整,有明显的振荡环带构造,属岩浆成因锆石。本次对样品11HN31A中24个分析点的激光ICP-MS锆石UPb年代学测定,其分析计算结果见表1和图3。样品11HN31A中24颗锆石分析点的Th/U变化范围为0.13~1.13,显示岩浆锆石特征[44]。所测24个点的206Pb/238U 年龄为(241±5)~(1 694±32)Ma,其中有14个分析点获得比较一致的206Pb/238U表面年龄,其206Pb/238U 加权平均年龄为(242.2±2.6)Ma(MSWD=0.1,n=14),1个分析点的206Pb/238U表面年龄大于1 600Ma,其余分析点则获得一些古生代的206Pb/238U表面年龄。

4 地球化学特征

本次分析的基性脉岩的主量元素和微量元素分析数据列于表2。琼西南中沙农场9个基性岩样品的w(SiO2)为52.39%~53.44%,w(K2O+Na2O)的变化范围为5.02%~5.71%,大多数样品均富钾(2.45% ~3.29%)、高 K2O/Na2O 值 (0.91~1.63,平均1.21),在w(K2O+Na2O)-w(SiO2)图解中落于玄武质粗面安山岩-玄武安山岩成分范围,结合岩相学特征,这些基性岩脉为辉长辉绿岩(图4)。此外,琼西南基性岩脉还具有较高的w(Al2O3)(15.80%~16.14%)和较低的w(TiO2)(1.20%~1.23%)。

图3 琼西南基性岩脉锆石U-Pb谐和图Fig.3 U-Pb Concordia diagram of zircons from the mafic dykes in SW Hainan Island

图4 琼西南基性脉岩w(K2O+Na2O)-w(SiO2)岩石化学分类图Fig.4 w(K2O+Na2O)vs w(SiO2)diagram for the mafic dykes in SW Hainan Island

表1 11HN-31A样品中锆石的LA-ICP-MS U-Pb同位素分析结果Table 1 LA-ICP-MS zircon U-Pb analytical results for the mafic dyke(11HN-31A)

表2 基性脉岩主量元素和微量元素分析数据Table 2 Major element and trace element compositions of mafic dykes

表2(续)

琼西南基性岩脉样品具有较高的稀土元素丰度(w(∑REE)= (236.9~259.6)×10-6,平 均245.0×10-6)。轻稀土明显富集,轻重稀土比值平均为12.36,(La/Yb)N=19.39~21.06,弱负Eu异常 (δEu=0.76~0.84)。在球粒陨石标准化图解上,所有样品都表现出LREE富集的右倾斜曲线(图5a),有着与岛弧火山岩或活动大陆边缘相类似的配分模式。在原始地幔标准化多元素蛛网图(图5b)中,样品大离子亲石元素(如 Rb、Ba、Th、U)和LREE明显富集,弱的Sr、P负异常,高场强元素Nb、Ta、Ti明显亏损,Zr、Hf异常不明显,其配分形式相似于岛弧火山岩。

图5 基性岩脉稀土配分模式图(a)和微量元素蛛网图(b)Fig.5 Chondrite-normalized REE-patterns diagram (a)and multi-element diagram (b)

5 讨论

5.1 基性岩脉的形成时间

基性岩脉中通常存在大量的捕虏锆石,反映曾经历过的构造热事件,只有基性岩浆原生的锆石年龄才能代表基性岩脉的侵位形成时代。本文分析的锆石取自海南中沙农场基性岩脉样品11HN-31A,CL图像显示锆石形态完整,有明显的振荡环带构造,所有分析点的Th/U值均大于0.1,显示岩浆锆石特征。14个分析点获得比较一致的206Pb/238U表面年龄,其206Pb/238U 加权平均年龄为(242.2±2.6)Ma。在野外,可见基性岩脉与志留纪强变形砂岩NW向变形面理呈大角度截交,而该处NW向变形面理的形成年龄约245.0Ma(黑云母Ar-Ar年龄)[17,39]。根据构造切割关系,基性岩脉的形成时代要晚于砂岩NW面理的形成时间。唐立梅等[26]在海南岛东部万宁地区发现240.0Ma的辉长岩和辉绿岩脉,与琼西南基性岩脉有着相似的地球化学特征,可能有着相同的形成时代。因此,(242.2±2.6)Ma可解释为基性岩脉的侵入结晶年龄,其余较老的206Pb/238U年龄可能为捕获锆石年龄。

5.2 岩石成因

琼西南基性岩脉在w(K2O+Na2O)-w(SiO2)图解中落入玄武岩-玄武安山岩成分范围,且具有相对富集大离子亲石元素(Sr、K、Rb、Ba、Th)和轻稀土元素,亏损高场强元素 Nb-Ta-Ti,Zr、Hf异常不明显的元素地球化学特征,相似于岛弧火山岩。在w(Zr)-w(Ti)(图6a)和w(Ti)/1 000-w(V)(图6b)图解上,琼西南基性岩脉落入板内碱性玄武岩的范围。样品具有较高的w(Zr)((248~274)×10-6)和Zr/Y值(10.85~11.55),表现为大陆玄武岩特征。在Nb*2-Zr/4-Y图(图7a)和Nb/Zr-Th/Zr图(图7b)上,基性岩脉样品落入板内碱性玄武岩和大陆拉张带玄武岩区。由此发现琼西南基性岩脉可能形成于拉张构造环境。

大多数样品的w(Sr)(平均为997×10-6)和w(Ba)(平均为695×10-6)较相近,表明在岩浆分异过程中它们的总分配系数KD接近于1,说明岩浆的分离结晶作用不明显,也没有确认的地球化学指标显示其在上升过程中经历明显的地壳混染。样品的Nb/U=10.95,Nb/La=0.29,Ce/Pb=3.43,远低于典型未被地壳混染的MORB和OIB的值(Nb/U=47±10,Nb/La=1.0,Ce/Pb=25±5)[45-46],且Nb/La值(0.29)明显低于大陆地壳平均值(0.7),Zr/Hf值 为 41.98,高 于 原 始 地 幔 的 Zr/Hf值(36.27±2.0),也反映其可能是受俯冲流体交代作用的影响。在 Th/Zr-Ba/Zr图解(图8)中,上述基性岩脉表现出洋壳流体交代的演化趋势。这些证据表明,该基性岩脉的岩浆源区可能受到俯冲带液体交代改造而造成地幔源区发生富集[6,47]。

5.3 构造意义

图6 基性岩脉的w(Zr)-w(Ti)图(a)和w(Ti)/1 000-w(V)图(b)Fig.6 Zr-Ti and Ti/1 000-V diagrams for mafic dykes in SW Hainan Island

图7 基性岩脉 Nb*2-Zr/4-Y图(a)和Nb/Zr-Th/Zr图(b)Fig.7 Nb*2-Zr/4-Y diagram (a)and Nb/Zr-Th/Zr diagram (b)for mafic dykes

虽然对海南基底属性及其构造区划还存在争议,但目前最新的研究资料表明海南可能分属于华南和印支2个块体[10-18]。李献华等[7,16]将邦溪一晨星蛇绿岩带作为华南块体与印支块体的缝合带,并与晚古生代(267~340Ma)Song Ma(越南)[49-51]、Truong Son(越南)北部280~270Ma的花岗闪长岩 带[52]、墨 江 弧 后 盆 地 火 山 岩 带[53]、双 沟 (云南)[54-56]基性-超基性岩带相接,构成一个近东西向延伸的弧岩浆和蛇绿混杂带,认为可以代表华南和印支块体的碰撞缝合带。五指山地区发现SHRIMP锆石U-Pb年龄为269~262Ma的同碰撞花岗片麻岩[18,20],这些花岗片麻岩具有形成于活动大陆边缘钙碱性I型花岗岩相似的元素-同位素地球化学特征,且越南中部Truong Son Belt麻粒岩相变质年龄为250~260Ma[57],暗示华南、印支陆块于260Ma左右已经开始俯冲碰撞,在250~260Ma已经达到碰撞峰期。陈新跃等[39]和Zhang等[17]在琼中和琼西公爱地区均发现242~245Ma(糜棱岩同构造期云母40Ar/39Ar坪年龄)的NW向右旋走滑韧性剪切带,与印支地块北部Song Ma、Da Nang-Khe Sanh和Song Ca-Rao Nay等韧性剪切带的变形年龄(254~240Ma)和构造特征一致[48,58-60]。同时结合区域上下三叠统陆相磨拉石沉积建造的发育[23,37],240Ma左右华南与印支陆块应处于后造山阶段。

另外从岩浆作用证据来看,海南岛约在245Ma时可能已经进入后造山伸展阶段,因为在此阶段已伴随有碱性岩和辉长岩、辉绿岩等的发育。如:谢才富等[24]在三亚地区发现244Ma的石榴霓辉石正长岩;唐立梅等[26]在万宁地区发现240Ma的辉长岩和辉绿岩脉,在分洲界发现231Ma的具有与A型花岗岩相似地球化学特征的正长岩;王大英和云平[61]也在乐东县木棉头乡一带发现了233Ma的A型花岗岩。本次研究显示琼西南中沙基性岩脉也形成于242Ma,与上述碱性岩、辉长辉绿岩和A型花岗岩具有相似的形成时代,应均形成于后造山陆内拉张的构造环境。这些暗示从245~230Ma海南地区应处于华南-印支造山运动后造山期的应力松弛阶段,产生一系列的基性岩脉和A型花岗岩等造山后碱性岩浆岩,与滇西澜沧江带和金沙江-哀牢山带碰撞后的岩浆作用在时空上相吻合[62-65]。因此,可以推断中沙基性岩的源区继承自晚二叠世-早三叠世俯冲碰撞期间,邦溪-晨星弧后盆地俯冲消减,俯冲板片脱水流体与上覆岩石圈交代而形成地幔楔。流体交代是形成上述基性岩浆源区的主导因素,碰撞后阶段的减压熔融导致热界面抬升,从而诱发地幔楔熔融而形成上述基性岩。

图8 琼西南基性岩脉的Th/Zr-Ba/Zr图解Fig.8 Th/Zr-Ba/Zr diagram for mafic dykes in SW Hainan Island

6 结论

1)LA-ICP-MS锆石 U-Pb年代学测试表明琼西南中沙农场基性岩脉的侵位形成时间为(242.2±2.6)Ma,代表海南三叠纪的一次构造-岩浆事件。

2)琼西南基性岩脉具富钾、高K2O/Na2O值、高Al2O3、低TiO2、相对富集大离子亲石元素(Sr、K、Rb、Ba、Th)和轻稀土元素、亏损高场强元素 Nb-Ta-Ti元素的地球化学特征;低的Nb/La值、与原始地幔相近的Nb/Ta值和高的Zr/Hf值暗示基性岩脉的岩浆源区可能受到俯冲带流体交代作用的影响。

3)海南约240.0Ma的基性岩脉形成于后造山陆内伸展的构造环境,暗示约在240.0Ma时,华南-印支之间的碰撞拼合已经结束。

):

[1]Weaver B L,Tarney J.The Scourie Dyke Suite:Petrogenesis and Geochemical Nature of the Proterozoic Sub-Continental Mantle [J]. Contrib Mineral Petrol,1981,78:175-188.

[2]Halls H C,Fahrig W F.Mafic Dyke Swarms[J].Geol Assoc Can Spec Paper,1987,34:503.

[3]Hoek J D,Seitz H M.Continental Mafic Dyke Swarm as Tectonic Indicators:An Example from the Vestfold Hills,East Antarctica[J].Precambrian Research,1995,75(3/4):121-139.

[4]Windley B F.The Evolving Continents[M].3rd ed.New York:John Wiley,1995:526.

[5]Lan C Y,Chung S L,Mertzman S A,et al.Mafic Dikes from Chinmen and Liehyu Off Southeast China:Petrochemical Characteristics and Tectonic Implications[J].J Geol Soc China,1995,38(3):183-213.

[6]李献华,胡瑞忠,饶冰.粤北白垩纪基性岩脉的年代学和地球化学[J].地球化学,1997,26(2):14-31.

Li Xianhua,Hu Ruizhong,Rao Bing.Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong,SE China[J].Geochimica,1997,26(2):14-31.

[7]李献华,周汉文,丁式江,等.海南岛洋中脊型变质基性岩:古特提斯洋壳的残片?[J].科学通报,2000,45(1):84-88.

Li Xianhua,Zhou Hanwen,Ding Shijiang,et al.Metamorphosed Mafic Rocks with N-Type MORB Geochemical Features in Hainan Island:Remnants the Paleo-Tetohys Oceanic Crust?[J].Chinese Science Bulletin,2000,45(1):84-88.

[8]张业明,谢才富,付太安,等.海南岛地质构造演化刍论[J].科学技术与工程,2005,5(20):1485-1487.

Zhang Yeming,Xie Caifu,Fu Taian,et al.Tectonic Evolution of Hainan Island[J].Science Technology and Engineer,2005,5(20):1485-1487.

[9]夏斌,崔学军,谢建华,等.关于南海构造演化动力学机制研究的一点思考[J].大地构造与成矿学,2004,28(3):221-227.

Xia Bin,Cui Xuejun,Xie Jianhua,et al.Thinking About the Dynamoics Mechanism Study on Formation and Evolution of South China Sea[J].Geotectonica et Metallogenia,2004,28(3):221-227.

[10]杨树锋,虞子冶,郭令智,等.海南岛的地体划分、古地磁研究及其板块构造意义[J].南京大学学报:地球科学版,1989,1(1/2):38-46.

Yang Shufeng,Yu Ziye,Guo Lingzhi,et al.The Division and Palaeomagnetism of the Hainan Island and Plate Tectonic Significance[J].Journal Nanjing University:Earth Science Edition,1989,1(1/2):38-46.

[11]HsüK J,Li J L,Chen H H,et al.Tectonics of South China:Key to Understanding West Pacific Geology[J].Tectonophysics,1990,183:9-39.

[12]陈海泓,肖文交.多岛海型造山作用:以华南印支期造山带为例[J].地学前缘,1998,5(增刊):95-101.

Chen Haihong, Xiao Wenjiao. Archipelago Orogenesis:Examples from Indosinian Orogenic Belts in South China[J].Earth Science Frontiers,1998,5(Sup.):95-101.

[13]Metcalfe I,Shergold I H,Li Z X.IGCP 321Gondwana Dispelrsion and Asian Accretion:Fieldwork on Hainan Island[J].Episodes,1993,16:443-447.

[14]夏邦栋,施光宇,方中,等.海南岛晚古生代裂谷作用[J].地质学报,1991,65(2):103-115.

Xia Bangdong,Shi Guangyu,Fang Zhong,et al.The Late Palaeozoic Rifting in Hainan Island,China[J].Acta Geologica Sinica,1991,65(2):103-115.

[15]方中,徐士进,陈克荣,等.海南石碌群中双峰火山岩Sm-Nd同位素特征兼论石碌铁矿成矿背景[J].地球化学,1993,22(4):326-336.

Fang Zhong,Xu Shijin,Chen Kerong,et al.The Minerogenesis of Shilu Iron Ores with Apecial Reference to Sm-Nd Isotope Geochemical Characteristics of Shilu-Group Bimodal Volcanic Rocks in Hainan Island[J].Geochimica,1993,22(4):326-336.

[16]李献华,周汉文,丁式江,等.海南岛“邦溪-晨星蛇绿岩片”的时代及其构造意义:Sm-Nd同位素制约[J].岩石学报,2000,16(3):425-432.

Li Xianhua,Zhou Hanwen,Ding Shijiang,et al.Sm-Nd Isotopic Constraints on the Age of the Bangxi-Chenxing Ophiolite in Hainan Island:Implicateons for the Tectonic Evolution of Eastern Paleo Tethy[J].Acta Petrologica Sinica,2000,16(3):425-432.

[17]Zhang F F,Wang Y J,Chen X Y,et al.Triassic High-Strain Shear Zones in Hainan Island (South China)and Their Implications on the Amalgamation of the Indochina and South China Blocks:Kinematic and40Ar/39Ar Geochronological Constraints[J].Gondwana Research,2011,19:910-925.

[18]陈新跃,王岳军,范蔚茗,等.海南五指山地区花岗片麻岩锆石LA-ICP-MS U-Pb年代学特征及其地质意义[J].地球化学,2011,40(5):454-463.

Chen Xinyue,Wang Yuejun,Fan Weiming,et al.Zircon LA-ICP-MS U-Pb Dating of Gneisses from Wuzhishan Area, Hainan, and Geological Significances[J].Geochimica,2011,40(5):454-463.

[19]谢才富,朱金初,丁式江,等.琼中海西期钾玄质侵入岩的厘定及其构造意义[J].科学通报,2006,51(16):1944-1954.

Xie Caifu,Zhu Jinchu, Ding Shijiang,et al.Shoshonitic Intrusive of Qiongzhong Area and Its Tectonic Siqnificance[J].Chinese Science Bulletin,2006,51(16):1944-1954.

[20]Li X H,Li Z X,Li W X,et al.Initiation of the Indosinian Orogeny in South China:Evidence for a Permian Magmatic Arc in the Hainan Island[J].J Geol,2006,114(3):341-353.

[21]汪啸风,马大铨,蒋大海.海南岛地质:三:构造地质[M].北京:地质出版社,1991:10-100.

Wang Xiaofeng,Ma Daquan,Jiang Dahai.Geology of Hainan Island:Ⅲ:Structure Geology[M].Beijing:Geological Publishing House,1991:10-100.

[22]汪啸风,马大铨,蒋大海.海南岛地质:一:地层古生物[M].北京:地质出版社,1991:131-192.

Wang Xiaofeng,Ma Daquan,Jiang Dahai.Geology of Hainan Island:Ⅰ:Stratum and Paleontology[M].Beijing:Geological Publishing House,1991:131-192.

[23]夏邦栋,于津海,方中,等.海南岛海西-印支期花岗岩的地球化学特征及成因[J].地球化学,1990,19(4):365-373.

Xia Bangdong,Yu Jinhai,Fang Zhong,et al.Geochemical Characteristics and Origin of the Hercynian-Indosinian Granites of Hainan Island,China[J].Geochimica,1990,19(4):365-373.

[24]谢才富,朱金初,赵子杰,等.三亚石榴霓辉石正长岩的锆石SHRIMP U-Pb年龄:对海南岛海西-印支期构造演化的制约[J].高校地质学报,2005,11(1):47-57.

Xie Caifu,Zhu Jinchu,Zhao Zhijie,et al.Zircon SHRIMP U-Pb Age Dating of Garnet-Acmite Syenite: Constrains on the Hercynian-Indosiniantectonic Evolution of Hainan Island[J].Geological Journal of China Universities,2005,11(1):47-57.

[25]李孙雄,云平,范渊,等.海南岛琼中地区琼中岩体锆石U-Pb年龄及其地质意义[J].大地构造与成矿学,2005,29(2):227-233.

Li Sunxiong,Yun Ping,Fan Yuan,et al.Zircon UPb Age and Its Geological Significance for Qiongzhong Pluton in Qiongzhong Area,Hainan Island[J].Geotectonica et Metallogenia,2005,29(2):227-233.

[26]唐立梅,陈汉林,董传万,等.海南岛三叠纪中基性岩的年代学、地球化学及其地质意义[J].地质科学,2010,45(4):1139-1156.

Tang Limei,Chen Hanlin,Dong Chuanwan,et al.Triassic Neutrall and Basic Rocks in Hainan Island,Geochemistry and Their Geological Signinficance[J].Chinese Journal of Geology,2010,45(4):1139-1156.

[27]广东省地质矿产局.广东省区域地质志[M].北京:地质出版社,1988:1-602.

Bureau of Geology and Mineral Resources of Guangdong Province.Regional Geology of Guangdong Province [M]. Beijing: Geological Publishing House,1988:1-602.

[28]马大铨,黄香定,肖志发,等.海南岛结晶基底:抱板群层序与时代[M].武汉:中国地质大学出版社,1998:1-52.

Ma Daquan,Huang Xiangding,Xiao Zhifa,et al.Crystalline Basement in Hainnan Island Sequence and Epoch of the Baoban Group[M].Wuhan:China University of Geosciences Press,1998:1-52.

[29]龙文国,符策锐,朱耀河.海南岛东部黄竹岭地区“抱板群”的解体[J].地层学杂志,2002,26(3):212-215.

Long Wenguo,Fu Cerui,Zhu Yaohe.Disintegration of the Baoban Group in Huangzhuling Area of Eastern Hainan Island[J].Journal of Stratigrphy,2002,26(3):212-215.

[30]Liang X Q,Li X H.Late Permian to Middle Triassic Sedimentary Records in Shiwandashan Basin:Implication for the Indosinian Yunkai Orogenic Belt,South China[J].Sedimentary Geology,2005,177:297-320.

[31]Li Z X,Li X H,Zhou H W,et al.Grenvillian Continental Collision in South China:New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia[J].Geology,2002,30(2):163-166.

[32]姚华舟,黄照先.海南岛万宁发现奥陶纪地层[J].华南地质与矿产,1999(1):13-17.

Yao Huazhou,Huang Zhaoxian.Discovery of the Ordovician from Wanning Area,Hainan Island[J].Geology and Mineral Resources of South China,1999(1):13-17.

[33]姚华舟,黄照先,谢才富,等.海南岛万宁地区寒武纪地层及其沉积特征[J].地层学杂志,1999,23(10):270-276.

Yao Huazhou,Huang Zhaoxian,Xia Caifu,et al.The Cambrian Lithostratigraphical Sequence and Sedimentary Facies of Wanning Area,Hainan Island[J].Journal of Stratigraphy,1999,23(10):270-276.

[34]曾庆銮,李志宏,谢才富,等.海南岛早志留世晚期腕足类Xinanospirifer的发现:兼论南好组[J].古生物学报,2004,43(1):86-93.

Zeng Qingluan,Li Zhihong,Xie Caifu,et al.Discovery of Late Landoverian Brachiopod Xinanospirifer from Hainan Island Area,China with Comments on the Nanhao Formation[J]. Acta Palaeontologica Sinica,2004,43(1):86-93.

[35]龙文国,童金南,朱耀河,等.海南儋州-屯昌地区二叠纪地层的发现及其意义[J].华南地质与矿产,2007(1):38-45.

Long Wenguo,Tong Jinnan,Zhu Yaohe,et al.Discovery of the Permian in the Danzhou-Tunchang Area of Hainan Island and Its Geological Significance[J].Geology and Mineral Resources of South China,2007(1):38-45.

[36]胡宁,张仁杰,冯少南.海南岛泥盆-石炭系界线研究[J].地质科学,2002,37(3):313-319.

Hu Ning,Zhang Renjie,Feng Shaonan.Study on Devonian-Carboniferous Boundary in Hainan Island,South China[J].Scientia Geologica Sinica,2002,37(3):313-319.

[37]唐作友,冯少南.海南岛大岭地区二叠系的发现及意义[J].地层学杂志,1998,22(3):232-240.

Tang Zuoyou,Feng Shaonan.Discovery of the Permian System in the Daling Area of Hainan Island and Its Significance[J].Journal of Stratigraphy,1998,22(3):232-240.

[38]王智琳,许德如,张玉泉,等.海南石碌铁矿床花岗闪长斑岩的锆石ICP-MS U-Pb定年及地质意义[J].大地构造与成矿学,2011,35(2):292-299.

Wang Zhilin,Xu Deru,Zhang Yuquan,et al.Zircon LA-ICP-MS U-Pb Dating of the Granodiorite Porphyry from the Shilu Iron Ore Deposit,Hainan Province and Its Geological Implicateons [J].Geotectonica et Metallogenia,2011,35(2):292-299.

[39]陈新跃,王岳军,韦牧,等.海南公爱NW向韧性剪切带构造特征及其40Ar/39Ar年代学约束[J].大地构造与成矿学,2006,30(3):312-319.

Chen Xinyue, Wang Yuejun, Wei Mu,et al.Microstructural Characteristics of the NW-Trending Shear Zones of Gong’ai Region in Hainan Island and Its40Ar-39Ar Geochronologyical Constraints[J].Geotectonica et Metallogenia,2006,30(3):312-319.

[40]Jackson S E,Pearson N J,Griffin W L,et al.The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In Situ U-Pb Zircon Geochronology[J].Chem Geol,2004,211(1/2):47-69.

[41]Xia X P,Sun M,Sun Y L,et al.Simultaneous Determination of U-Pb and Hf Isotope Compositions of Zircon by Excimer Laser-Ablation Multiple-Collector ICPMS[J].J Anal at Spectrom,2011,26:1868-1871.

[42]Li X H,Qi C S,Liu Y,et al.Petrogenesis of the Neoproterozoic Bimodal Volcanic Rocks Along the Western Margin of the Yangtze Block:New Constraints from Hf Isotopes and Fe/Mn Ratios[J].Chinese Science Bull,2005,50:2481-2486.

[43]刘颖,刘海臣,李献华.用ICP-MS准确测定岩石样品中的40余种微量元素[J].地球化学,1996,25(6):552-558.

Liu Ying,Liu Haichen,Li Xianhua.Simultaneous and Precise Determineation of 40Trace Elements in Rock Samples Using ICP-MS[J].Geochimica,1996,25(6):552-558.

[44]Chen Y L,Lou Z H,Zhao J X,et al.Petrogenesis and Dating of the Kangding Complex,Sichuan Province[J].Science in China:Series D,2005,48(5):622-634.

[45]Hoffman A W,Jochum K P,Seufert M,et al.Nd and Pb in Oceanic Basalts:New Constraints on Mantal Evolution[J].Earth Planet Sci Lett,1986,79:33-45.

[46]Sun S S,McDonough W F.Chemical and Isotope Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes:A[C]//Saunders A D,Norry M J.Magmatism in the Ocean Basins.London:Geological Society Special Publication,1989:313-345.

[47]Gill J B.Orogenic Andesites and Plate Tectonics[M].Berlin:Springer Verlag,1981:358-360.

[48]张贵山,温汉捷,李石磊,等.闽北角闪辉长岩的地球化学特征及其地球动力学意义[J].矿物学报,2009,29(2):243-251.

Zhang Guishan,Wen Hanjie,Li Shilei,et al.Geochemical Characteristics of Bojite in Northern Fujian Province and Their Geodynamic Significance[J].Acta Mineralogica Sinica,2009,29(2):243-251.

[49]Carter A,Roques D,Bristow C.Understanding Mesozoic Accretion in Southeast Asia:Significance of Triassic Thermotectonism (Indosinian Orogen)in Vietnam[J].Geology,2001,29(3):211-214.

[50]Lan C Y,Chung S L,Shen J S,et al.Geochemical and Sr-Nd Isotopic Characteristics of Granitic Rocks from Northern Vietnam[J].Journal of Asian Earth Sciences,2000,18(3):267-280.

[51]Carter A,Clift P D.Was the Indosinian Orogeny a Triassic Mountain Building or a Thermotectonic Reactivation Event?[J].C R Geoscience,2008,340(2/3):83-93.

[52]Liu J L,Tran M D,Tang Y,et al.Permo-Triassic Granitoids in the Northern Part of the Truong Son Belt,NW Vietnam:Geochronology,Geochemistry and Tectonic Implications[J/OL].Gondwana Research,Doi:10.1016/j.gr.2011.10.011.

[53]Fan W M,Wang Y J,Zhang A M,et al.Permian Arc-Back-Arc Basin Development Along the Ailaoshan Tectonic Zone:Geochemical,Isotopic and Geochronological Evidence from the Mojiang Volcanic Rocks,Southwest China[J].Lithos,2010,119(3/4):553-568.

[54]简平,汪啸风,何龙清,等.云南新平县双沟蛇绿岩UPb年代学初步研究[J].岩石学报,1998,14(2):207-211.

Jian Ping,Wang Xiaofeng,He Longqing,et al.UPb Zircon Dating of the Shuanggou Ophiolite from Xinping County, Yunnan Province [J]. Acta Petrologica Sinica,1998,14(2):207-211.

[55]Jian P,Liu D Y,Kröner A,et al.Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China:I:Geochemistry of Ophiolites,Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks[J].Lithos,2009,113(3/4):748-766.

[56]Jian P,Liu D Y,Kröner A,et al.Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China:II:Insights from Zircon Ages of Ophiolites,Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks and Generation of the Emeishan CFB Province[J].Lithos,2009,113(3/4):767-784.

[57]Maluskiaa H,Lepvrierb C,Leyreloupa A,et al.40Ar-39Ar Geochronology of the Charnockites and Granulites of the Kan Nack Complex,Kon Tum Massif,Vietnam [J].Journal of Asian Earth Sciences,2005,25:653-677.

[58]Lepvrier C,Maluski H,Van Vuong N,et al.Indosinian NW Trending Shear Zones Within the Truong Son Belt(Vietnam):39Ar-40Ar Trassic and Cretaceous to Cenozoic Overprints [J].Toctonophysics,1997,283(1/2/3/4):105-128.

[59]Lepvrier C,Maluski H,Van Tich V,et al.The Early Triassic Indosinian Orogeny in Vietnam(Truong Son Belt and Kontum Massif):Implications for the Geodynamic Evolution of Indochina[J].Tectonophysics,2004,393:87-118.

[60]Nam T N,Tofiumi M,Itaya T.P-T-tPaths and Postn-Ctamorphic Exhumation of the Day Nui Con Voi Shear Zone in Vietnam[J].Tectonophysics,1998,290(3/4):299-318.

[61]王大英,云平.海南乐东地区晚三叠世A型花岗岩基本特征[J].广东地质,1999,14(4):19-21.

Wang Daying,Yun Ping.Basic Characteristics of Late Triassic A-Type Granite in Ledong Area,Hainan[J].Guangdong Geology,1999,14(4):19-21.

[62]Peng T P,Wang Y J,Fan W M,et al.SHRIMP Zircon U-Pb Geochronology of Early Mesozoic Felsic Igneous Rocks from the Southern Lancangjiang and Its Tectonic Implications[J].Science in China:Series D,2006,49:1032-1042.

[63]Wang Y J,Zhang A M,Fan W M,et al.Petrogeesis of Late Triassic-Collisional Basaltic Rocks of the Lancangjiang Tectonic Zone,Southwest China,and Tectonic Implications for the Evolution of the Eastern Paleotethys:Geochronological and Geochemical Constraints[J].Lithos,2010,120:529-546.

[64]刘显凡,楚亚婷,卢秋霞,等.云南老王寨金矿的深部地质过程:来自显微岩相学和元素地球化学的证据[J].吉林大学学报:地球科学版,2012,42(4):1026-1038.

Liu Xianfan,Chu Yating,Lu Qiuxia,et al.Deep Geological Processes on Laowangzhai Gold Deposit in Yunnan:Evidence from Petrography and Element Geochemistry[J].Journal of Jilin University:Earth Science Edition,2012,42(4):1026-1038.

[65]覃小锋,王宗起,曹洁,等.桂南钦防构造带西南段印支早期花岗岩的成因:年代学和地球化学约束[J].吉林大学学报:地球科学版,2013,43(5):1471-1488.

Qin Xiaofeng, Wang Zongqi, Cao Jie,et al.Petrogenesis of Early Indosinian Granites from the Southwestern Segment of Qinfang Tectonic Belt,Southern Guangxi:Constraints from Zircon U-Pb Chronology and Geochemistry[J].Journal of Jilin University:Earth Science Edition,2013,43(5):1471-1488.

猜你喜欢

印支基性岩海南岛
镇泾地区印支古界面上下油气富集规律研究
吉林省通化县四棚甸子地区铜镍成矿条件浅析
印支灰叶猴
西准噶尔乌尔禾早二叠世中基性岩墙群LA-ICP-MS锆石U-Pb测年及构造意义
是海南省还是海南岛?
华南印支期花岗岩分布及铀含量特征
印支地体泥盆纪牙形石、放射虫和竹节石组合
特提斯喜马拉雅多重基性岩浆事件:追溯新特提斯洋的生存时限
拉萨地块和羌塘地块多个二叠纪基性岩及一个古特提斯海山的初步古地磁结果:对模拟东冈瓦纳晚古生代裂解的暗示
关于海南岛战役作战方针的考察