APP下载

灰霉病菌侵染垫生长在不同介质表面上的超微结构

2014-05-04曹剑波等

湖北农业科学 2014年4期
关键词:玻璃纸灰霉病聚乙烯

曹剑波等

摘要:果蔬等经济作物生产中的重要病害——灰霉病是由真菌灰霉病菌(Botrytis cinerea Pers. Fr)引起,灰霉病菌的侵染垫是病菌侵染植物所必需的,试验研究了侵染垫的侵入机制。结果表明,灰霉病菌的侵染垫能在再生纤维素膜(玻璃纸)上生长并能降解该膜,然后侵入其中,在聚乙烯膜上不能生长亦不降解该膜。侵染垫在再生纤维素膜上的生长方式和侵入过程同在植物细胞表面完全一致,可见,植物中的纤维素是诱导灰霉病菌侵染垫形成和生长的重要因素。试验结果为进一步探讨灰霉病菌的侵染机制提供了线索。

关键词:灰霉病菌(Botrytis cinerea Pers. Fr);侵染垫;玻璃纸;聚乙烯膜;超微结构

中图分类号:TQ450.2 文献标识码:A 文章编号:0439-8114(2014)04-0814-04

Ultrastructural Studies on the Penetration Process of Botrytis cinerea Infection Cushion on Different Substrate Surfaces

CAO Jian-bo1a,ZHANG Jing1b,ZHANG Lei2,CHEN Qian-si3,QIN Li-hong1a,LI Guo-qing1b

(1.Huazhong Agricultural University,a.Public Laboratory of Electron Microscopy; b. Plant Science and Technology College, Wuhan 430070,China; 2.Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066,China; 3.Gene Research Center of Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou 450001,China)

Abstract: Gray mould disease caused by Botrytis cinerea is an important disease in cash crop production. The infection cushion is necessary for Botrytis cinerea penetrating into plants, but the mechanism of infection cushion penetrating into plants should be studied. The results showed that the infection cushion of Botrytis cinerea could grow on cellophane then penetrate into and degrade the cellophane composed of cellulose, but it could not grow on polyethylene membrane. The development and penetration process of Botrytis cinerea infection cushion on cellophane was identical to that on the plant surface. It is indicated that the cellulose in plant played an important role in inducing the development and penetration of Botrytis cinerea dicated cushion and provided clues for explaining pathogenicity of Botrytis cinerea.

Key words: Botrytis cinerea Pers. Fr; infection cushion; cellophane; polyethylene; ultrastructure

灰霉病(Gray mould disease)是由灰霉病菌(灰葡萄孢,Botrytis cinerea Pers. Fr)引起的真菌性病害。灰霉病菌属于坏死型(Necrotrophic)病原真菌,能侵染200多种植物,造成植物腐烂、减产,给农业生产带来重大经济损失[1]。灰霉病菌侵染植物可通过无性状态和孢子传播两种方式进行,菌丝顶端形成多细胞的爪状结构——侵染垫(Infection cushion)或孢子萌发管顶端形成类附着胞(Appressorium-like)结构侵入宿主,也可通过伤口直接进入宿主[2]。灰霉病菌在侵染宿主的过程中,侵染垫起着侵入和破坏组织细胞的作用,是病菌在宿主中扩散所需的必不可少的结构[3]。

已有研究表明,稻瘟病菌(Magnaporthe oryzae)的特化侵染结构——附着胞通过菌丝细胞的渗透压产生巨大的机械压力刺入植物表皮或其他坚硬的物质表面[4]。棉花下胚轴表面的拓扑结构是促进纹枯病菌(Rhizoctonia solani)侵染垫形成的主要因素,同时宿主的渗出液也会影响纹枯病菌侵染垫的形成[5]。灰霉病菌可在铺有玻璃纸(Cellophane)的培养基上生长,玻璃纸是由侧链被化学修饰的纤维素分子构成的再生纤维素膜[6]。为探讨灰霉病菌在玻璃纸上的生长情况和在聚乙烯膜上形成侵染垫的能力等问题,试验研究了灰霉病菌的侵染垫在玻璃纸、聚乙烯膜(Polyethylene)和油菜叶片上的超微结构及变化,确定纤维素和聚乙烯分子对灰霉病菌侵染垫的形成和生长的影响,为阐明灰霉病菌侵染垫的形成机理提供了线索。

1 材料与方法

1.1 材料

灰霉病菌菌株CanBC-2,分离自油菜叶片[7], 20 ℃培养, 4 ℃保存。实验室温室中种植感病油菜品种中油杂2号,取60 d苗龄植株中部的幼嫩叶片用于接种试验。玻璃纸、聚乙烯膜购买于国药集团化学试剂有限公司。

1.2 方法

1.2.1 灰霉病菌接种 采用离体叶片接种法[3],菌株CanBC-2在马铃薯葡萄糖(PDA)琼脂固体培养基上培养,取菌落边缘含有菌丝的琼脂块,分别接种到新采下的油菜叶片、铺有玻璃纸和聚乙烯膜的铁片上,保湿环境下20 ℃培养, 2 d后取叶片、玻璃纸和聚乙烯膜供试。

1.2.2 扫描电镜观察 将叶片剪成0.2 cm×0.2 cm,2.5%戊二醛固定4 h,0.1 mol/L磷酸缓冲液清洗3次,每次10 min,梯度乙醇溶液(30%、50%、70%、80%、90%、100%、100%)脱水各10 min,乙醇与乙酸异戊酯1∶1、1∶2混合液和乙酸异戊酯各置换10 min。HITACHI HCP-2型临界点干燥仪干燥。

玻璃纸和聚乙烯膜剪成0.2 cm×0.2 cm方形,部分放入水中超声波处理10 min以去除附着的菌丝,自然干燥。

将经超声波处理的和未处理的玻璃纸、聚乙烯膜以及干燥好的油菜叶片在JEOL JFC-160型离子溅射仪上溅射5 min,置于JEOL JEM-6390LV型扫描电镜下扫描拍照[8]。

1.2.3 透射电镜观察 将长有菌丝的叶片和玻璃纸剪成0.2 cm×0.2 cm块状,2.5%戊二醛固定并抽真空沉底4 h后,用0.1 mol/L磷酸缓冲液清洗3次,每次30 min。用1%锇酸后固定2 h,再用梯度丙酮溶液(30%、50%、70%、80%、90%、100%、100%)脱水各30 min,SPI-812树脂与丙酮混合液渗透、包埋。包埋块聚合后,用Leica UC6型超薄切片机切片,醋酸铀-柠檬酸铅染色,各染色30 min,HITACHI H-7650型透射电镜观察,Gatan 832型数字成像系统记录、拍照[9]。

2 结果与分析

2.1 侵染垫在玻璃纸和聚乙烯膜上呈现不同形态结构

灰霉病菌菌丝块接种到玻璃纸上2 d,玻璃纸上有大量菌丝出现由顶端分支膨大而形成的侵染垫(图1A),侵染垫的顶端陷入玻璃纸中,玻璃纸上的菌丝边缘出现胶状物。接种到聚乙烯膜上2 d,侵染垫形成很少,侵染垫中菌丝缠绕并未紧贴在膜的表面(图1B),菌丝顶端分支但不膨大而且未陷入膜中,菌丝边缘无胶状物。

2.2 侵染垫在玻璃纸和油菜叶片上的形态结构一致

灰霉病菌的菌丝块接种到玻璃纸和油菜叶片上2 d,菌丝顶端分支膨大形成侵染垫(图2A),侵染垫的顶端陷入玻璃纸中,边缘出现胶状物质,侵染垫后端的菌丝紧贴玻璃纸的部位也出现胶状物质,玻璃纸出现裂痕;侵染垫侵入玻璃纸并在侵入边缘形成胶状物质(图2B),超声波去除菌丝后的玻璃纸上出现质地松散、颗粒化、有裂缝的区域(图2C)。油菜叶片表面形成的侵染垫侵入叶片表皮细胞,侵染垫边缘的叶片表面出现胶状物质(图2D)。

2.3 侵染垫侵入玻璃纸和油菜叶片的方式相同

灰霉病菌的菌丝块接种到玻璃纸和油菜叶片上2 d,玻璃纸上侵染垫菌丝顶端紧贴玻璃纸表面,菌丝顶端的细胞壁变薄,有的菌丝细胞壁破裂形成小孔,菌丝的细胞质形成液滴状进入玻璃纸内部(图3A);菌丝间有胶状物质存在,玻璃纸内部靠近菌丝的区域有大量高电子密度的颗粒(图3A)。在油菜叶片上,侵染垫的菌丝穿透表皮细胞的细胞壁,菌丝的细胞质形成液滴状进入表皮细胞的细胞壁,菌丝侵入部位表皮细胞的细胞壁失去了纹理状结构(图3B)。未接种灰霉病菌的玻璃纸内部结构均匀,无高电子密度颗粒存在(图3C)。

3 小结与讨论

真菌常形成附着胞和侵染垫2种特化的结构穿透植物表面,从而侵入植物体内进行增殖[3,10,11]。灰霉病菌会形成3种侵染源——孢子、菌核和宿主组织包裹的菌丝侵染物,孢子通过分泌角质酶、果胶酶、脂肪酶等酶类降解植物细胞表面的角质层而非依靠机械压力进入植物细胞[12,13]。这3种侵染源侵染植物都是以菌丝的形式并依靠菌丝实现在植物组织中扩散,菌丝侵染过程中会形成侵染垫侵入植物,因此侵染垫在灰霉病菌生长繁殖中起重要作用[1,14-16]。稻瘟病菌的附着胞通过细胞内产生的渗透压形成巨大的机械压力刺入坚硬的物质如聚乙烯膜、聚酯薄膜以及植物表皮细胞[4]。然而,灰霉病菌的侵染垫不能侵入聚乙烯膜,说明侵染垫的菌丝不能通过机械压力侵入坚硬的物质表面及植物表皮细胞。灰霉病菌的侵染垫能够侵入由再生纤维素构成的玻璃纸中并在侵入部位产生胶状物质,而且破坏了玻璃纸的结构,造成玻璃纸表面颗粒化及出现裂纹,说明灰霉病菌的侵染垫同孢子一样,通过降解纤维素等细胞壁成分来穿透植物表皮细胞,从而进入植物组织内部增殖扩散。

纹枯病菌侵染垫的形成受到棉花下胚轴表面的拓扑结构和宿主的渗出液影响,甲基葡萄糖(Methyl glucose)不能影响侵染垫的形成[5]。然而,本研究发现在诱导灰霉病菌形成侵染垫方面,表面均光滑的聚乙烯膜和玻璃纸却起着不同的作用。在这两种膜上生长的灰霉病菌都由含马铃薯葡萄糖培养基的琼脂块提供营养。玻璃纸上产生了大量的侵染垫,侵染垫顶端菌丝膨大,侵入玻璃纸而且在侵入位点处产生胶状物质;聚乙烯膜上只有少量侵染垫,侵染垫的顶端未膨大亦无胶状物质产生;而灰霉病菌的侵染垫侵入玻璃纸的方式与侵入植物表皮细胞完全一致。这些说明,物体表面的拓扑结构并不能影响灰霉病菌的侵染垫形成,而是物体表面的分子成分影响了侵染垫的形成和生长。聚乙烯分子不能诱导灰霉病菌侵染垫的形成和生长,纤维素分子同植物表皮中的分子一样能够诱导灰霉病菌侵染垫的形成和生长,而且纤维素分子侧链羟基被化学修饰并不影响纤维素分子诱导侵染垫的形成和生长。植物细胞中含有大量的纤维素[17],本研究说明植物中的纤维素是诱导灰霉病菌的侵染垫形成和灰霉病侵入植物体内的因素之一,而且纤维素分子的主链结构可能起着重要作用。

参考文献:

[1] WILLIAMSON B,TUDZYNSKI B, TUDZYNSKI P,et al. Botrytis cinerea: The cause of grey mould disease[J]. Mol Plant Pathol,2007,8(5):561-580.

[2] VIRET O, KELLER M, JAUDZEMS V G, et al. Botrytis cinerea infection of grape flowers: Light and electron microscopical studies of infection sites[J]. Phytopathology,2004,94(8):850-857.

[3] ZHANG L, WU M D, GUO Q L, et al. Effect of mitovirus infection on formation of infection cushions and virulence of Botrytis cinerea[J]. Physiological and Molecular Plant Pathology,2010,75(2):71-80.

[4] HOWARD R J, FERRARI M A, ROACH D H, et al. Penetration of hard substrates by a fungus employing enormous turgor pressures[J]. Proc Natl Acad Sci USA,1991,88(24):11281-11284.

[5] ARMENTROUT V N, DOWNER A J, GRASMICK D L, et al. Factors affecting infection cushion development by Rhizoctonia solani on cotton[J]. Phytopathology,1987,77(4):623-630.

[6] Cellophane[ED/OL]. http://targetstudy.com/knowledge/invention/140/cellophane.html.2013-06-07.

[7] GUO Q L, HUANG H, ERICHSON R S, et al. Biological control of blossom blight of alfalfa caused by Botrytis cinerea under environmentally controlled and field conditions[J]. Plant disease,88(11):1246-1251.

[8] 秦利鸿,曹建波,易伟松.绿茶多糖的扫描电镜制样新方法及原子力显微镜观察[J]. 电子显微学报,2009,28(2):162-167.

[9] 曹剑波,李 彬,陈焕春,等.高致病性猪繁殖与呼吸障碍综合征病毒感染猪主要脏器的超微结构变化[J].华中农业大学学报,2009,28(3):330-333.

[10] SHARMAN S, HEALE J B. Penetration of carrot roots by the grey mould fungus Botrytis cinerea Pers.ex Pers [J]. Pysiology Plant Pathology,1977,10(1):63-71.

[11] DEISING H B, WERNER S, WERNITZ M. The role of fungal appressoria in plant infection [J]. Microbes and Infection, 2000,2(13):1631-1641.

[12] GARCIA-ARENAL F, SAGASTA E M. Scanning electron microscopy of Botrytis cinerea penetration of bean (Phaseolus vulgaris) hypocotyls [J]. Phytopathology,1980,99(1):37-42.

[13] REIS H,PFIFFI S,HAHN M. Molecular and functional characterization of a secreted lipase from Botrytis cinerea[J]. Molecular Plant Pathology,2005,6(3):257-267.

[14] MCKEEN W. Mode of penetration of epidermal cell walls of Vicia faba by Botrytis cinerea[J]. Phytopathology,1973,64(1):461-467.

[15] QINH S Q, JOYCE D C, IRVING D E, et al. Histology of waxflower(Chamelaucium spp.) flower infection by Botrytis cinerea[J]. Plant Pathology,2011,60(2):278-287.

[16] BACKHOUSE D, WILLETS H J. Development and structure of infection cushions of Botrytis cinerea[J]. Trans Br Mycol Soc,1987,89(1):89-95.

[17] RICHMOND T.Higher plant cellulose synthases[J]. Genome Biol,2000,1(4):3001-3005.

参考文献:

[1] WILLIAMSON B,TUDZYNSKI B, TUDZYNSKI P,et al. Botrytis cinerea: The cause of grey mould disease[J]. Mol Plant Pathol,2007,8(5):561-580.

[2] VIRET O, KELLER M, JAUDZEMS V G, et al. Botrytis cinerea infection of grape flowers: Light and electron microscopical studies of infection sites[J]. Phytopathology,2004,94(8):850-857.

[3] ZHANG L, WU M D, GUO Q L, et al. Effect of mitovirus infection on formation of infection cushions and virulence of Botrytis cinerea[J]. Physiological and Molecular Plant Pathology,2010,75(2):71-80.

[4] HOWARD R J, FERRARI M A, ROACH D H, et al. Penetration of hard substrates by a fungus employing enormous turgor pressures[J]. Proc Natl Acad Sci USA,1991,88(24):11281-11284.

[5] ARMENTROUT V N, DOWNER A J, GRASMICK D L, et al. Factors affecting infection cushion development by Rhizoctonia solani on cotton[J]. Phytopathology,1987,77(4):623-630.

[6] Cellophane[ED/OL]. http://targetstudy.com/knowledge/invention/140/cellophane.html.2013-06-07.

[7] GUO Q L, HUANG H, ERICHSON R S, et al. Biological control of blossom blight of alfalfa caused by Botrytis cinerea under environmentally controlled and field conditions[J]. Plant disease,88(11):1246-1251.

[8] 秦利鸿,曹建波,易伟松.绿茶多糖的扫描电镜制样新方法及原子力显微镜观察[J]. 电子显微学报,2009,28(2):162-167.

[9] 曹剑波,李 彬,陈焕春,等.高致病性猪繁殖与呼吸障碍综合征病毒感染猪主要脏器的超微结构变化[J].华中农业大学学报,2009,28(3):330-333.

[10] SHARMAN S, HEALE J B. Penetration of carrot roots by the grey mould fungus Botrytis cinerea Pers.ex Pers [J]. Pysiology Plant Pathology,1977,10(1):63-71.

[11] DEISING H B, WERNER S, WERNITZ M. The role of fungal appressoria in plant infection [J]. Microbes and Infection, 2000,2(13):1631-1641.

[12] GARCIA-ARENAL F, SAGASTA E M. Scanning electron microscopy of Botrytis cinerea penetration of bean (Phaseolus vulgaris) hypocotyls [J]. Phytopathology,1980,99(1):37-42.

[13] REIS H,PFIFFI S,HAHN M. Molecular and functional characterization of a secreted lipase from Botrytis cinerea[J]. Molecular Plant Pathology,2005,6(3):257-267.

[14] MCKEEN W. Mode of penetration of epidermal cell walls of Vicia faba by Botrytis cinerea[J]. Phytopathology,1973,64(1):461-467.

[15] QINH S Q, JOYCE D C, IRVING D E, et al. Histology of waxflower(Chamelaucium spp.) flower infection by Botrytis cinerea[J]. Plant Pathology,2011,60(2):278-287.

[16] BACKHOUSE D, WILLETS H J. Development and structure of infection cushions of Botrytis cinerea[J]. Trans Br Mycol Soc,1987,89(1):89-95.

[17] RICHMOND T.Higher plant cellulose synthases[J]. Genome Biol,2000,1(4):3001-3005.

参考文献:

[1] WILLIAMSON B,TUDZYNSKI B, TUDZYNSKI P,et al. Botrytis cinerea: The cause of grey mould disease[J]. Mol Plant Pathol,2007,8(5):561-580.

[2] VIRET O, KELLER M, JAUDZEMS V G, et al. Botrytis cinerea infection of grape flowers: Light and electron microscopical studies of infection sites[J]. Phytopathology,2004,94(8):850-857.

[3] ZHANG L, WU M D, GUO Q L, et al. Effect of mitovirus infection on formation of infection cushions and virulence of Botrytis cinerea[J]. Physiological and Molecular Plant Pathology,2010,75(2):71-80.

[4] HOWARD R J, FERRARI M A, ROACH D H, et al. Penetration of hard substrates by a fungus employing enormous turgor pressures[J]. Proc Natl Acad Sci USA,1991,88(24):11281-11284.

[5] ARMENTROUT V N, DOWNER A J, GRASMICK D L, et al. Factors affecting infection cushion development by Rhizoctonia solani on cotton[J]. Phytopathology,1987,77(4):623-630.

[6] Cellophane[ED/OL]. http://targetstudy.com/knowledge/invention/140/cellophane.html.2013-06-07.

[7] GUO Q L, HUANG H, ERICHSON R S, et al. Biological control of blossom blight of alfalfa caused by Botrytis cinerea under environmentally controlled and field conditions[J]. Plant disease,88(11):1246-1251.

[8] 秦利鸿,曹建波,易伟松.绿茶多糖的扫描电镜制样新方法及原子力显微镜观察[J]. 电子显微学报,2009,28(2):162-167.

[9] 曹剑波,李 彬,陈焕春,等.高致病性猪繁殖与呼吸障碍综合征病毒感染猪主要脏器的超微结构变化[J].华中农业大学学报,2009,28(3):330-333.

[10] SHARMAN S, HEALE J B. Penetration of carrot roots by the grey mould fungus Botrytis cinerea Pers.ex Pers [J]. Pysiology Plant Pathology,1977,10(1):63-71.

[11] DEISING H B, WERNER S, WERNITZ M. The role of fungal appressoria in plant infection [J]. Microbes and Infection, 2000,2(13):1631-1641.

[12] GARCIA-ARENAL F, SAGASTA E M. Scanning electron microscopy of Botrytis cinerea penetration of bean (Phaseolus vulgaris) hypocotyls [J]. Phytopathology,1980,99(1):37-42.

[13] REIS H,PFIFFI S,HAHN M. Molecular and functional characterization of a secreted lipase from Botrytis cinerea[J]. Molecular Plant Pathology,2005,6(3):257-267.

[14] MCKEEN W. Mode of penetration of epidermal cell walls of Vicia faba by Botrytis cinerea[J]. Phytopathology,1973,64(1):461-467.

[15] QINH S Q, JOYCE D C, IRVING D E, et al. Histology of waxflower(Chamelaucium spp.) flower infection by Botrytis cinerea[J]. Plant Pathology,2011,60(2):278-287.

[16] BACKHOUSE D, WILLETS H J. Development and structure of infection cushions of Botrytis cinerea[J]. Trans Br Mycol Soc,1987,89(1):89-95.

[17] RICHMOND T.Higher plant cellulose synthases[J]. Genome Biol,2000,1(4):3001-3005.

猜你喜欢

玻璃纸灰霉病聚乙烯
番茄灰霉病巧防治
后吸收法交联聚乙烯制备及存储性研究
会哭的玻璃纸
玻璃纸的怪脾气
如何防治棚室番茄灰霉病
葡萄灰霉病的防治
废弃交联聚乙烯回收利用研究进展
占压下埋地聚乙烯管力学响应的数值模拟
甘肃:《聚乙烯(PE)再生料》将于9月1日实施