APP下载

有理数混合运算的“分段意识”

2014-04-29周时和

初中生世界·七年级 2014年10期

初学有理数混合运算时,有些同学容易受到运算法则、符号、括号的干扰而出错,本文介绍一种分段意识,希望能对大家有所帮助.

一、 根据运算符号来分段

有理数的基本运算有五种:加、减、乘、除、乘方,其中加减为第一级运算,乘除为第二级运算,乘方为第三级运算. 所谓运算符号分段法,就是用低级运算符号把高级运算分成若干段.

例1 计算:-0.252÷

-4×(-1)2007+(-2)2×(-3)2.

【解析】式子中的“+”号把整个算式分为两段,其中“÷”和“×”把第一段又分成三小段,“×”把第二段又分成两小段,这样我们在计算时,就可以逐段逐层进行.

解:原式=-×16×(-1)+4×9=1+36=37.

二、 找准括号来分段

按照运算顺序,有括号的应该先算括号里面的,而实际上括号把算式分为两段(或三段),可同时分别对括号内外的算式进行运算.

例2 计算:-14-(1-0.5)××[2-(-3)2].

【解析】按照第一种“运算符号分段法”,算式中的“-”号将整个算式分成两段,但是这样还不够清晰,也容易出现错误.于是,我们再用括号将整个算式分成三大段,这三大段同时进行,这样问题就比较清晰了.

解:原式=-1-0.5××(2-9)=-1-×(-7)=-1+1=.

三、 根据绝对值符号来分段

绝对值除了本身的作用外,还具有括号的作用,从运算顺序的角度来说,也要先计算绝对值符号里面的,同理,绝对值符号也可以把算式分成两段(或三段),可同时进行计算.

例3 计算:-5-(+49)--

-5÷(-6)

--9.

【解析】本题是含有绝对值和括号的混合运算,按照分段法的要求应分为五段进行计算.

解:原式=5-49+--9=-53+ -=-53.

(作者单位:江苏省海安县隆政初级中学)