化验对象数据库设计分析
2014-04-21王继鹏金云智
王继鹏+金云智
摘 要 分析化验对象数据库是石油企业勘探开发一体化建设的一部分,是石油企业信息化建设的基础工程。分析化验对象数据库的设计是依据石油企业实际业务场景,运用先进对象建模分析方法和模型设计思想,完成分析化验对象数据库的分析和设计。
关键词 分析化验;业务域;POSC Epicentre逻辑模型;业务活动
中图分类号:TP311 文献标识码:A 文章编号:1671-7597(2014)04-0017-02
1 业务对象分析
库房中储存的样品主要是岩石样和流体样,根据取样方式的不同可以把岩石样分为岩心样、壁心样、岩屑样和露头样,把流体样分为常温常压流体样和高温高压(统称PVT)样,根据流体相态又可以把流体样分为油样、气样和水样。
分析化验所使用的样品是小样,也叫做实验用样,是大块岩石样或大桶流体样中的一部分。根据实验的目的和要求,可以把小样分为水平样和垂直样。
2 分析化验项目分析
根据样品的类型可以把分析化验分为流体样实验、岩石样实验和岩石样-流体相共存实验3种。
2.1 流体样实验
流体样实验是对从井筒或地面上取得的流体样进行分析的,研究井筒中流体的特性,为油气田开发前期设计提供参考依据,为生产井提供产能分配或井下作业提供基本数据支持。
根据流体取样方式的不同,把流体样实验分为常温常压流体实验和PVT实验,由于流体相可以分为油相、气相和水相,所以流体实验又细分为常温常压油样实验、常温常压气样实验、常温常压水样实验、原油PVT实验、易挥发油PVT实验和凝析气PVT实验。
2.2 岩石样实验
岩石样实验是对钻井过程中取到的岩石所进行的分析或鉴定,是地层岩石特性最直接、最准确的表现。
根据实验的目的不同,把岩石实验分为常规岩心分析、特殊岩心分析、岩石地化分析等。
2.3 岩石样-流体相共存实验
岩石样-流体相共存实验是分析岩石在以不同的流体相作用下,所呈现出来的岩石的润湿性和联通性等,主要有毛管压力实验和相对渗透率实验等。
根据流体相作用方式的不同可以分为压汞法和驱替法,驱替实验分为油驱替水、水驱替油和气驱替水等。
3 业务分析
业务分析是数据库设计的基石,只有业务分析好,才能设计出满足需要的业务模型。根据工作内容可以把业务分析分为业务调研、业务划分、业务活动分析和数据分析。
3.1 业务调研
确定分析化验业务域的业务调研范围和调研内容,形成业务调研清单,并制定业务调研模板。业务调研模板是业务调研的依据,必须要包含业务名称、业务流程和数据应用情况等。在执行调研时,按照业务调研模板内容,详细了解分析化验业务现状、数据库现状、应用现状和数据管理机制等,并收集相关资料(报表、数据、业务规范等)。
3.2 业务划分
根据业务调研情况对分析化验业务域进行业务划分,划分为一级业务和业务活动,一级业务主要有常规岩心分析、特殊岩心分析、岩石地化分析、油气地化分析、岩矿分析、同位素分析、岩石力学分析、古生物分析、油气水分析和流体PVT分析等。
业务活动是对一级业务进行细分,直至划分到不能再分为止。如一级业务常规岩心分析包含有岩石物性分析、岩心伽玛测定和岩心CT扫描等。
3.3 业务活动分析
根据业务划分得到一个个业务活动,每一个业务活动都有自己的业务含义和业务范围。业务活动分析就是要详细分析每一个业务活动流程,如业务活动的时间、地点、参与人员、业务规则、输入数据、输出数据、相关的标准规范等。如岩石物性分析是实验员(who)收到分析化验任务后(when),在实验室(where)根据样品基本信息和检测任务单的要求对岩心样品(which)进行岩石孔隙度、渗透率、含油饱和度、密度、碳酸盐岩含量的分析化验,形成岩石物性分析成果数据表和业务分析报告(what),为表征岩石孔隙的发育程度、储集流体的通过能力和岩石渗流特征提供重要参数,为储量计算、采收率确定等提供参数依据(why)。
3.4 数据分析
数据分析是对业务活动数据集和现有专业数据库物理表进行详细分析,业务活动数据集分析是对业务活动的输入数据和输出数据进行分析,规范业务活动输入数据集和输出数据集,形成业务活动数据集;现有专业数据库物理表分析是对现有在用专业数据库物理数据表进行分析,分析出专业数据库物理数据表的实际业务含义,具体是哪个业务活动产生的,对应于业务活动的哪个数据集,形成专业数据库物理数据表对业务活动数据集的映射关系。
数据分析表如下:
业务活动 输入数据 输出数据 业务活动数据集 专业数据库
岩石物性分析 检测任务单 岩石物性
分析报告 岩石物性分析报告 文档数据库
实验样品信息 岩石物性分析
成果数据 分析化验数据库
4 数据模型设计
数据模型设计是实现业务分析到物理模型设计的所有过程,主要分为业务模型设计、采集模型设计、逻辑模型设计和物理模型设计。
4.1 业务模型设计
根据业务调研和分析成果,对业务模型进行标准化梳理,对数据流进行详细分析,完成从业务分析到业务模型的转换,形成业务模型。
4.2 采集模型设计
制定业务模型中数据集合并原则,根据这些原则分析业务模型中需要合并的数据集,通过专业工具完成业务模型数据集的合并工作,实现从业务模型到采集模型的转换。业务模型数据集合并原则:首先是业务活动场景相同;其次是业务活动产生的数据项相似。
4.3 逻辑模型设计
通过对POSC Epicentre逻辑模型和PPDM模型的研究,结合石油企业业务实际,采用面向对象的设计方法设计分析化验逻辑模型。逻辑模型主要分为对象模型、活动模型和属性模型。对象模型是对分析化验业务域中所涉及到的业务进行抽象,提取出一个个业务对象,用前缀OOE_表示,如岩心的对象模型是OOE_Core等;活动模型是对分析化验业务域中所有业务场景进行抽象,形成业务活动编目,存储在OOE_Activity实体里,具体的业务分析活动只是业务活动编目的具体实例。如岩石物性分析是业务活动,***井岩心常规分析报告是业务活动实例;属性模型是业务活动数据集中的相同数据项的抽象,提取出一个个属性对象,使用前缀OOP_表示,如孔隙度的属性模型是OOP_Porosity。
4.4 物理模型设计
设计从逻辑模型到物理模型的投影规则,依据投影规则实现逻辑模型到物理模型的转换,投影出不同版本的数据库,以支持不同的数据存储和管理需求。常用的投影规则有直接投影、复制投影和合并投影,不同的实体具有不同的投影规则。在投影时,为了保证物理模型的最优化设计和数据存储的最少冗余,要求分析所有实体对应的最优投影规则,根据最优投影规则一次投影出物理模型。
5 总结
分析化验对象数据库的设计是依据国际先进的POSC Epicentre模型,根据对象设计方法设计的,具有对象的特征,能很好的满足业务人员的使用习惯,为今后的勘探开发设计提供强有力的支持。
参考文献
[1]王海平.基于POSC的油田业务分析与建模方法[J].计算机系统应用,2010.endprint