浅谈小学数学概念教学中学生逻辑思维能力的初步培养
2014-04-17王玮佳
王玮佳
(无锡外国语学校,江苏无锡,214000)
数学是一门重要学科,具有高度的抽象性,要学好数学必须具有抽象思维能力;数学还具有高度的严谨性,数学学习中要求概念准确、判断推理严密、结论精确,这些都与逻辑思维紧密联系。小学数学教学中培养学生初步的逻辑思维能力始终是小学数学教学研究的一个重要问题,是小学生数学能力的重要组成部分,也是小学数学教学的目的任务之一,因此培养初步逻辑思维能力对小学生学好数学有重要作用。
一、概念教学的含义及形式
概念是最基本的思维形式,任何一门学科都是由一系列的概念及其体系组成的。数学概念是组成其他数学知识的细胞,是学习及运用一切数学知识的基础。在概念教学过程中,为了使学生顺利地获取有关概念,常常要提供丰富的感性材料让学生观察,在观察的基础上通过教师的启发引导,对感性材料进行比较、分析、综合,最后再概括。这一系列思维活动可以培养学生的比较和分类的能力、分析和综合的能力及抽象概括的能力,促进学生智力的发展。同时在巩固运用概念的过程中要进行判断和推理,这又有利于培养学生的判断、推理能力。因此,我们可以看到,概念教学有利于培养学生的逻辑思维能力。
然而数学概念是反映一类对象本质属性的思维形式,任何一个数学概念都是对客观现实中一类对象本质属性抽象概括的结果,它具有抽象性。这种数学概念的抽象性和小学生思维的形象性特点之间存在着一定的矛盾。为了处理好这一矛盾,需要在小学数学概念教学中采用不同的形式来教学相关的数学概念,从而达到既能让学生理解、掌握、运用概念,又能初步培养学生逻辑思维能力的目标。常用的教学形式可以有:
(一)用画图来揭示概念的本质属性
小学数学教材中关于自然数1、2、3、4……的概念,可以通过画图(若干个对等集合)来揭示。例如自然数“2”,从主图中先数出两个小朋友,再数出两架滑翔机、两只小鸟等,比较不同事物,认识它们的共同点——个数都是二(或者说:它们都是两个),从而初步建立自然数“2”的概念。揭示形的概念一般都可以用这种方式,如对角的初步认识,也是先出示日常生活中经常看到的各种角的形状的物体图,再用纸折成大小不同的角的图形,并用硬纸条做成活动的角的模型,运用图形揭示出它们共同的形状特征。
(二)用描述的方法来说明概念
所谓描述一般采用“像这样的……叫做……”的叙述方式来说明概念。例如小数的初步认识就是这样描述的:像 0.1、0.8、2.7、8.05 这样的数都是小数。分数的意义也是用这种方式来进行说明的。
(三)用逐步渗透的方法来揭示概念的本质属性
所谓逐步渗透,就是让学生在不同场合、分阶段多次接触概念所反映的一些对象,并逐步揭示概念的本质属性。例如四则运算的概念,开始让学生有初步的认识,当学生感性认识达到一定程度时,再揭示四则运算的内涵。又如小数、分数的意义和角的定义等都可以分阶段逐步揭示,由个别的、局部的认识逐步过渡到一般的、整体的理解,以符合小学生思维发展水平和认知规律。
二、利用数学概念教学,培养学生初步逻辑思维能力
小学数学中的初步逻辑思维能力,一般指初步的比较、分析、综合、抽象、概括能力,以及有条理地思考问题的敏捷、灵活的思维品质。下面结合笔者的教学实践,谈一谈如何在小学数学概念教学中应用上述教学形式培养学生初步逻辑思维能力的认识和做法。
(一)比较能力的培养
在小学数学教学中,概念与概念之间有着紧密的联系与区别,需要通过比较加深认识。比较能力有助于学生形成概念、区分易混淆概念等,因此在数学概念教学中培养学生的比较能力是一条重要途径。
在教学新的概念的最初阶段,可引导学生观察具体材料,运用比较方法发现材料中的共同因素,使它与其他无关因素区分开来,为抽象概括出概念做好准备,从而使学生的比较能力得到培养。如教学“有余数除法”,可以设计不同的除法计算题,让学生计算后,在观察、比较中发现余数总是在比除数小的范围内变化,而和被除数与商的大小无关,这样的比较就为抽象概括出“余数一定比除数小”作了准备。
教学新的概念时,在练习中安排适当的“变式”训练,让学生进行比较,能防止无关因素的干扰。这些都可以培养学生的比较能力。比较新旧概念,也可以提高学生的比较能力。新概念教学后,教师引导学生回忆旧概念,比较它们之间的异同,排除旧概念对新概念的干扰,并使新概念纳入原有的认知结构中,使学生原有的认知结构得到完善和发展。
(二)分析、综合能力的培养
分析、综合能力是逻辑思维能力的重要组成部分,在教学中要概括出数与形的概念,必须进行分析、综合的思维活动。小学生在实际操作中,容易理解事物之间的联系与变化,逐步学会对概念进行分析、综合。如低年级学习数的组成,学生通过摆小棒理解数的组成的同时,也初步接受了分析、综合能力的培养。又如学生学习圆的时候,可通过学具操作及比较、分析、综合,发现直径与半径间的关系等概念。
思维表现于语言,语言是思维的外壳,思维在语言中表现出来。在学生学习概念时,让他们叙述概念的研究、发现过程,并帮助他们把话说完整、正确。有条理的、合乎逻辑的说话训练,有助于培养学生的分析、综合能力。
(三)概括能力的培养
任何一个简单的数学概念都是抽象的,因此,提高学生的概括能力对于数学学习有着十分重要的意义。但如果在概念教学中没有足够的感性材料作基础,任何概括的思维活动都只能流于形式。有计划、有目的地提供丰富的感性材料,能帮助学生在观察、比较、分析、综合的基础上,抽象、概括出概念。
例如通过下列感性材料让学生观察、比较、分析、综合,把一个圆平均分成两份,其中的一份就是这个圆的二分之一;把一个长方形平均分成三份,表示这样的一份就是这个长方形的三分之一;把一根线段平均分成五份,表示这样的一份就是这根线段的五分之一;把一个正方形平均分成九份,表示这样的四份就是这个正方形的九分之四等。学生在实际活动中,逐步理解、领会了二分之一、三分之一、五分之一、九分之四等概念,在此基础上再给出单位“1”的概念就能比较自然地概括出“分数”就是把一个整体(单位1)平均分成若干份,表示这样的一份或几份的数。这样,学生的概括能力也就得到了培养。
(四)判断能力的培养
研究数学经常要对现实世界的空间形式和数量关系作出肯定或否定的回答,因此要大量地使用判断。小学数学中的定义、定律、公式等都是判断,因此,具有一定的判断能力才能学好数学。加强概念教学,正是培养小学生判断能力的有效途径。
在概念教学中,要清楚判断能力首先表现在判断要恰当上,这就要求在判断中“质”的界限要十分清楚。判断的质是判断主概念(主项)和谓概念(谓项)之间联系的最根本的性质,具体表现在联系词上。根据判断的联系词是肯定还是否定,可以把判断分为肯定判断和否定判断。因此,在概念教学中要使学生认识,肯定判断是肯定对象有某些属性,而否定判断是否定对象有某些属性,两者的界限必须清楚。如“x+2=0是方程”是肯定判断,“15不是质数”是否定判断,不能含糊其辞。有些判断,虽然没有明确地用“是”或“不是”,但仍然对事物表示出肯定或否定判断,如“三角形的内角和等于180度”“整体大于部分”等。
其次,在概念教学中要引导学生对判断中的“量”进行分析,让学生懂得不能混淆判断的量。既不能把单称判断说成特称判断,也不能把特称判断说成全称判断,否则就会发生错误。如“所有正方形是长方形”是真判断,而“所有长方形是正方形”则是假判断。
另外,由于学生容易混淆必然判断和可能判断,误将可能判断当作必然判断,如将“分数计算的结果不一定仍是分数”误认为“分数计算的结果一定仍是分数”,所以概念教学中要引导学生区分“可能”和“必然”。还要让学生懂得,由于“不”字在判断中的位置不同,判断就有了不同的逻辑意义。如“一定能”“一定不能”“不一定能”“不一定不能”这四种情况,前两者属于必然判断,后两者属于可能判断。
(五)推理能力的培养
小学生推理能力的发展,主要有以下两个阶段:一是直观阶段,学生年龄越小,推理就越需要建立在直接观察的前提上,把判断和结论跟直接感知的事物紧密联系起来;二是开始以抽象前提为基础进行推理,但只有当学生借助直观形式或熟悉的事物把抽象前提加以具体化的时候,推理才能顺利进行。不依靠直观作为依据的抽象推理,只有少数学生能做到。
因此在这阶段教学概念时,如果能创设情境,提供典型的事例,就利于学生归纳推理能力的培养。如在教中年级“小数的基本性质”时,提供恰当的事例:0.1 米 =0.10 米 =0.100 米,0.30=0.3,引导学生观察小数末尾的“0”的变化,再由此归纳出小数的末尾添上‘0’或去掉‘0’,小数的大小不变。又如学习“分数大小比较”时,教师列出“2/5<3/5,7/8>5/8,11/24>7/24……”引导学生观察分母、分子的情况,归纳出分母相同的两个分数,分子大的分数比较大。
三、小结
在小学数学概念教学中初步培养学生的比较能力、抽象概括能力、分析综合能力、判断推理能力,从整体上说,还应该注意:首先,逻辑思维能力的各个方面是互相紧密联系的,在教学某个数学概念时逻辑思维能力的各个方面都是互相渗透、互相作用的,在教学中应充分注意到这一点。其次,必须坚持启发式教学,积极调动学生的思维。再次,要充分注意挖掘教材中的逻辑因素,制定出具体的教学目标,选择适当的教学方法,有目的、有计划地培养小学生的初步逻辑思维能力。最后,还要重视语言表达能力的培养。如果教师能充分重视并利用小学数学概念教学培养学生的逻辑思维能力,对学生的逻辑思维发展和思维品质的培养将起到很大的促进作用。
[1]金成梁.小学数学教学概论[M].北京:开明出版社,1998.
[2]全国中小学教师继续教育网.义务教育课程标准解读:小学数学[M].北京:中国轻工业出版社,2012.
[3]陈亚明.小学数学教例研究[M].宁波:宁波出版社,2004.
[4]孔企平.小学儿童如何学习数学[M].上海:华东师范大学出版社,2001.