APP下载

胶北地体地壳演化:玲珑黑云母花岗岩继承锆石U-Pb年龄、微量元素和Hf 同位素证据*

2014-04-13黄涛杨立强刘向东李海林张炳林王建刚赵云峰张宁

岩石学报 2014年9期
关键词:环带苏鲁锆石

黄涛 杨立强** 刘向东 李海林 张炳林 王建刚 赵云峰 张宁

HUANG Tao1,YANG LiQiang1**,LIU XiangDong1,LI HaiLin1,ZHANG BingLin1,WANG JianGang2,ZHAO YunFeng2 and ZHANG Ning1

1. 中国地质大学地质过程与矿产资源国家重点实验室,北京 100083

2. 山东黄金矿业(莱州)有限公司焦家金矿,莱州 261441

1. State Key Laboratory of Geological Process and Mineral Resources,China University of Geosciences,Beijing 100083,China

2. Jiaojia Gold Company,Shandong Gold Mining Co. ,Ltd. ,Laizhou 261441,China

2014-01-30 收稿,2014-05-20 改回.

1 引言

胶北是地壳构造运动、变质作用、岩浆活动多旋回发育地区(杨立强等,2000;Deng et al.,2000,2001;Yang et al.,2006,2007a,b,2008),具有复杂的演化历史,其中晚侏罗世岩浆活动强烈,致使该期岩浆活动的产物——玲珑黑云母花岗岩在本区大面积出露(图1)。玲珑黑云母花岗岩是过铝质花岗岩,为下地壳物质部分熔融的产物(Zhang et al.,2010;Ma et al.,2013),因此岩石中常残留有地壳源区物质,尤其是源区中的锆石,因为其矿物学稳定性极高,即使经历后期多期热事件仍可保留,以继承锆石形式存在于新生岩石中。通过对锆石进行详细显微结构研究,并测定其微量元素组成和U-Pb 定年,可以获取不同成因继承锆石寄主岩石经历的热事件。由于老地壳常经历复杂的演化历史,因此在地壳深部往往存在外来的物质,其中的一些外来继承锆石同时可以为构造重建提供重要信息。另外过铝质花岗岩中常含有异常老的继承锆石,可以为其寄主地体前寒武纪地壳提供重要信息。锆石Hf 同位素体系很稳定,即使在麻粒岩相变质作用下,Hf 同位素体系仍可保持原始的Hf 同位素组成,现已被广泛应用于地壳的生长和演化的研究(Siebel et al.,2009;Geng et al.,2012;Liu et al.,2013a)。因此玲珑黑云母花岗岩中继承锆石为研究其寄主地体(胶北地体)地壳演化提供了一个良好的研究对象。

前人通过对玲珑黑云母花岗岩年代学及岩石成因研究,已获得了大量的继承锆石年龄和Hf 同位素数据(Wang et al.,1998;Zhang et al.,2003,2010;Yang et al.,2012;Jiang et al.,2012;Ma et al.,2013),但是并没有对继承锆石进行详细的成因研究,也未对继承锆石对胶北地体地壳演化的指示意义进行详细讨论。本文试图通过对玲珑黑云母花岗岩中继承锆石进行U-Pb 定年和Hf 同位素分析,综合锆石显微结构、微量元素特征,讨论继承锆石形成环境和成因,分析其来源,然后再结合前人在玲珑黑云母花岗岩中所获大量的继承锆石年龄和Hf 同位素数据,确定区域上发生的热事件,地壳生长和再造事件,为胶北地体早期的演化历史提供依据。

2 区域地质背景

胶北地体位于太平洋板块西缘,华北克拉通东南缘(Deng et al.,2003a,b,2008,2009,2011;Yang et al.,2003b,2004,2009;杨立强等,2014a,b),西侧以郯庐断裂为界,邻接鲁西地块,东南侧以五莲-烟台断裂为界,邻接苏鲁超高压变质带(邓军等,2004,2010;Deng et al.,2006;Yang and Badal,2013;Yang et al.,2014c)。胶北地体前寒武纪基底主要包括太古代TTG 片麻岩和胶东岩群,古元古代荆山群、粉子山群、芝罘群和新元古代蓬莱群(图1)。TTG片麻岩在胶北大面积出露,原岩年龄主要为~2.9Ga,~2.7Ga,~2.5Ga(Liu et al.,2013a;Jahn et al.,2008),其内分布着呈透镜状或不规则脉状的太古代-古元古代基性-超基性岩(刘平华等,2011)。胶东岩群岩性主要为黑云变粒岩、斜长角闪岩、角闪变粒岩和磁铁石英岩(刘平华等,2013;沈其韩,2008)。胶东岩群角闪变粒岩锆石SHRIMP 定年表明其形成于~2.5Ga(万渝生等,2012)。荆山群不整合于TTG片麻岩和胶东岩群之上,岩性主要为黑云变粒岩、大理岩、石墨片岩等(王世进等,2009;刘平华等,2011)。锆石U-Pb 定年表明其沉积年限在2.2 ~1.9Ga(Wan et al.,2006;董春艳等,2010)。粉子山群与荆山群属同时异相(纪壮义,1993),岩性为大理岩、黑云变粒岩、长石石英岩(王世进等,2009)。芝罘群岩性为石英岩、黑云片岩、大理岩(王世进等,2009;Liu et al.,2013b)。蓬莱群岩性为千枚岩、板岩、石英岩、大理岩、泥灰岩等,角度不整合于粉子山群之上(初航等,2011)。

古生代胶北处于平稳隆升期(Deng et al.,2003b),无这一时期的地质体,三叠纪扬子板块与华北克拉通发生碰撞(Yang and Wu,2009;Liu et al.,2004),形成苏鲁超高压变质带(Tang et al.,2008a;Liu et al.,2011),同时伴有岩浆活动,而后胶北的岩浆活动也变得异常强烈,详细的锆石U-Pb年代学研究表明胶北中生代发生以下3 期岩浆活动:晚侏罗世160 ~141Ma(Zhang et al.,2010;Ma et al.,2013),早白垩世早期132 ~123Ma(Yang et al.,2012;Wang et al.,2014;刘跃等,2014)和早白垩世晚期(118 ~111Ma)(张岳桥等,2007;Zhang et al.,2010)。其中晚侏罗世玲珑黑云母花岗岩在胶北广泛分布,呈北东向分布,主要侵入前寒武纪基底岩石,与它们呈渐变过渡关系,岩体内有大量前寒武纪基底岩石残留体,如TTG 片麻岩,变基性岩等。

图1 胶北地质简图及采样位置(据Yang et al.,2014c;万渝生等,2012 修编)Fig.1 Simplified geological map of the Jiaobei terrane,with the location of the samples in this study (modified after Yang et al.,2014c;Wan et al.,2012)

3 样品采集及分析方法

本次研究所用样品采自望儿山金矿床-150m 和-310m中段玲珑黑云母花岗岩,采样位置见图1。岩石样品呈浅灰白色,具中细粒结构,片麻状构造,主要矿物成分为斜长石(20% ~30%)、钾长石(20% ~35%)、石英(25% ~35%)以及黑云母(5% ~15%),另外有少量副矿物如锆石、榍石(图2)。

图2 玲珑黑云母花岗岩手标本(a、b)及镜下照片(c、d)Fig.2 Photos of specimens (a,b)and microphotographs(c,d)of the Linglong biotite graniteMineral abbreviations:Qtz-quartz;Pl-plagioclase;Kfs-K-feldspar;Bt-biotite;Zr-zircon;Spn-Sphene

图3 代表性锆石CL 图像及U-Pb 定年结果Fig.3 Typical CL images of zircons and the U-Pb ages

野外观察和室内系统岩相学研究之后,选取样品,将其破碎至80 ~100 目,经筛选、清洗和烘干后,采用重液、电磁仪等方法分离分选出锆石晶体;对分选后的锆石样品在双目镜下挑选出颗粒较大、形态完整、无裂痕、无包裹体的锆石颗粒,而后粘于环氧树脂表面,固化打磨抛光后镜下观察其显微结构并进行透射、反射和阴极发光照相;选点时结合锆石显微结构特征,避开裂隙和包裹体以及不同成因的区域,以期获得较准确的年龄信息,并特意选择具有继承核的锆石进行分析。锆石U-Pb 定年和微量元素测定在中国地质大学(北京)地学实验中心激光等离子体质谱实验室完成,分析仪器为美国New Wave Research Inc. 公司生产的UP193 SS 激光器和美国AGILENT 科技有限公司生产的Agilent 7500a 型四级杆等离子体质谱仪联合构成的激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)。详细的实验条件、测试分析流程及数据处理方法见Song et al.(2010)和Wang et al.(2012)。

锆石Hf 同位素测试在中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室Finnigan Neptune 多接收等离子质谱和Newwave UP213 紫外激光剥蚀系统(LA-MC-ICP-MS)上进行,分析点与U-Pb 定年分析点为同一位置。详细的实验条件、测试分析流程及锆石标准参考值见侯可军等(2007)。

为更真实反映继承锆石的特点,选取锆石年龄不谐和度<5%的数据进行统计讨论。因为谐和度较差的锆石通常因受后期热事件改造而导致严重铅丢失,表面年龄并不能代表锆石形成的年龄,且其微量元素和U-Pb 同位素体系也被破坏,不利于对继承锆石成因的讨论,统计的年龄分布也没有意义。

4 测试结果

4.1 锆石U-Pb 年龄和微量元素特征

4.1.1 样品WES10D214B1

图4 样品继承锆石U-Pb 谐和图(a、c)和年龄频率分布直方图(b、d)Fig.4 U-Pb concordia plots (a,c)and relative probability plots of U-Pb ages (b,d)of inherited zircons from sample WES10D214B1 and WES10D228B2

所测锆石绝大多数具核边结构,核部锆石通常呈他形,圆形外表,具灰色均匀的阴极发光,边部锆石常具震荡环带(图3a-i),个别具面状分带(图3j)。对25 颗锆石分析了31个测年点,其中3 个测点,表面年龄为367 ±5Ma ~921 ±13Ma(对于年龄<1000Ma 的年轻锆石采用206Pb/238U 年龄;对于>1000Ma 的锆石则采用207Pb/206Pb 的年龄),其不谐和度大于5%(表1;图4a,b),说明原锆石可能受后期热事件改造而导致铅丢失,其表面年龄并不能代表锆石形成的年龄,所以对其不予以讨论。剩余28 个测点落在谐和线上或附近,获得的表面年龄变化于176 ±3Ma ~2547 ±26Ma(表1;图4a,b),根据年龄分为5 组,分别为早侏罗世(176 ±3Ma ~198 ±3Ma,6 个测点)、晚三叠世(201 ±3Ma ~256 ±4Ma,17个测点)、古生代(261 ±4Ma ~398 ±7Ma,4 个测点)和新太古代晚期(2547 ±26Ma)。

早侏罗世继承锆石大部分具高的Th 含量和Th/U 值(表1;图5a),Th 为34.34 ×10-6~260.7 ×10-6,Th/U 值为0.18 ~1.19,它们具典型的振荡环带(图3b,c),年龄为180±3Ma ~198 ±3Ma,稀土配分模式显示轻稀土亏损,重稀土明显富集的特点,重稀土的分异程度较大,(Yb/Gd)N=40.6~64.7(表2),且具明显的Eu 负异常和明显的Ce 正异常(图6a)。具震荡环带、高的Th 含量和Th/U 值、Ce 的正异常、Eu 的负异常和重稀土富集等特点表明该组锆石具有岩浆成因(Hoskin and Schaltegger,2003;吴元保和郑永飞,2004)。测点W2141-21 年龄为176 ± 3Ma,Th 为8.66 ×10-6,含量很低,Th/U 值为0.04,可见环带模糊(图3a),稀土配分模式显示轻稀土亏损,重稀土富集的特点,(Yb/Gd)N=164.4(表2),且具明显的Eu 负异常和较明显的Ce 正异常(图6a),由于Th 较U、轻稀土元素较重稀土具有更大的离子半径,在变质重结晶作用过程中Th 和轻稀土更容易被逐出锆石的晶格,因此变质重结晶锆石具有相对较低的Th 含量、Th/U 比值、重稀土分异程度大等特点,且由于变质重结晶作用不彻底,锆石环带会变得模糊(Hoskin and Black,2000;Geisler et al.,2001;吴元保和郑永飞,2004),因此上述特点表明其为变质锆石。测点W2141-27(184 ±7Ma)稀土配分模式明显不同于其他锆石,轻稀土含量相对较低,重稀土强烈富集,重稀土分异程度非常大(图6a),(Yb/Gd)N达3619,说明锆石测点时可能打到富重稀土的矿物包体,所以

测试年龄可能不能代表其形成年龄。

表1 玲珑黑云母花岗岩继承锆石LA-ICP-MS U-Pb 定年结果Table1 LA-ICP-MS U-Pb datingresultsofinherited zirconsfromtheLinglongbiotitegranite

续表1Continued Table1

表2 玲珑黑云母花岗岩继承锆石微量元素分析结果( ×10 -6 )Table2 Traceelementcompositions( ×10 -6 ) ofinherited zirconsfromthetheLinglongbiotitegranite

续表2Continued Table2

图5 玲珑黑云母花岗岩继承锆石Th/U 值对U-Pb 谐和年龄投图(a)和谐和年龄频率分布直方图(b,不谐和度<5%)Fig.5 Th/U ratios vs. concordant U-Pb ages (a)and relative probability plots of concordant U-Pb ages (b,discordance <5%)of inherited zircons from the Linglong biotite granite

图6 玲珑黑云母花岗岩继承锆石球粒陨石标准化稀土配分曲线(标准化值据Sun and McDonough,1989)Fig.6 Chondrite-normalized REE patterns of inherited zircons from the Linglong biotite granite (normalization values after Sun and McDonough,1989)

三叠纪继承锆石中很多锆石Th/U 值小于0.1(图5a),无环带且重稀土的分异程度和ΣHREE 也存在差异(图6c),按其重稀土分异程度、ΣHREE 和Th/U 值大小和锆石显微结构分为三组:重稀土的分异程度较大,(Yb/Gd)N=29.16 ~48.46,ΣHREE 为94.8 ×10-6~464.5 ×10-6(表2),Th/U 值大于0.1,为0.14 ~0.21,Nb/Ta 值为1.37 ~6.75,呈继承核或位于边部具振荡环带(图3d,e),年龄为212 ±4Ma ~219 ±4Ma,具Eu 负异常和明显的Ce 正异常(图6c),具振荡环带,高Th/U 值、Nb/Ta 值和ΣHREE 等表明其为岩浆锆石;重稀土分异程度更大,(Yb/Gd)N=48.25 ~72.34,ΣHREE 稍高,为275.5 ×10-6~502.4 ×10-6(表2),但Th/U 值较低,大部分Th/U 值小于0.1,为0.01 ~0.20,Nb/Ta 值为0.22 ~2.53,呈继承核无环带(图3h),年龄为201 ±3Ma ~233 ±5Ma,锆石具明显的Eu 负异常和明显的Ce 正异常(图6c),较低的Th/U 值,Nb/Ta 值、较高的重稀土分异程度和ΣHREE 含量表明这组锆石为变质锆石(Tomaschek et al.,2003;Hoskin and Schaltegger,2003;吴元保和郑永飞,2004);重稀土分异程度很小,相对平坦,(Yb/Gd)N=2.65 ~18.49,ΣHREE 较低,为28.3 ×10-6~272.7 ×10-6,Th/U 值为0.01 ~0.20,Nb/Ta 值为0.46 ~2.60,另外一个较大为4.34,呈继承核无环带(图3e-g),年龄为209 ±3Ma ~238 ±4Ma,具轻微的Eu 负异常和明显的Ce 正异常(图6c)。重稀土平坦,低重稀土含量、Th/U 值和Nb/Ta 值,锆石无环带,无明显Eu 异常等特点表明后该组锆石可能为榴辉岩相变质锆石(Rubatto,2002;Tomaschek et al.,2003;Hoskin and Schaltegger,2003;吴元保和郑永飞,2004)。测点W214-49表面年龄为256 ±4Ma,CL 图像较模糊,可见微弱环带(图3i),而其稀土配分模式显示轻稀土富集,表明锆石可能发生强烈的蜕晶化而后发生重结晶作用(Belousova et al.,2002),所以测得年龄不能代表其真实形成年龄。

古生代继承锆石呈继承核无环带(图3j,k),Th/U 值为0.10 ~0.71,Nb/Ta 值为0.90 ~2.12,年龄为261 ±4Ma ~398±7Ma,稀土配分模式显示轻稀土亏损,重稀土富集的特点,(Yb/Gd)N=13.7 ~33.3,且具强烈的Eu 负异常和明显的Ce正异常(图6d),虽然该组锆石具较高的Th/U 值,但锆石核部明显受后期事件改造,而无环带,图3j 边部锆石具面状分带,说明存在变质流体的作用,而且该组锆石具较低的Nb/Ta 值,因此该组锆石为变质锆石。

新太古代继承锆石呈残留核,但仍可见环带(图3l),年龄为2547 ±26Ma,Th 含量为188.8 ×10-6,Th/U 值为1.06,Nb/Ta 值为3.74,其稀土元素总含量明显高于其他锆石(图6d),稀土配分模式显示轻稀土亏损,重稀土富集的特点,(Yb/Gd)N=18.3。且具强烈的Eu 负异常和稍弱的Ce 正异常(图6d),高的Th 含量和REE 含量、Ce 的正异常、Eu 的负异常和重稀土富集等特点表明该锆石为岩浆锆石(Hoskin and Schaltegger,2003)。

4.1.2 样品WES10D228B2

所测锆石绝大多数具核边结构,核部锆石通常呈他形,圆形外表,具灰色均匀的阴极发光,边部锆石常具振荡环带(图3m-x)。对32 颗锆石分析了43 个测年点,其中6 个测点,表面年龄为241 ±5Ma ~1798 ±41Ma,其不谐和度大于5%(表1;图4c,d),对其不予以讨论。剩余37 个测点落在谐和线上或附近,获得的表面年龄变化于181 ±5Ma ~832 ±22Ma(图4c,d),根据年龄分为5 组,分别为早侏罗世(181 ±5Ma ~199 ±3Ma,7 个测点)、晚三叠世(202 ±5Ma ~255 ±8Ma,20 个测点)、古生代(260 ±7Ma ~487 ±9Ma,8 个测点)、新元古代早期(563 ±10Ma)和新元古代中期(832 ±22Ma)。

早侏罗世继承锆石有两个测点Th/U 值小于0.1,为0.04 ~0.10(表1;图5a),年龄为189 ±3Ma ~199 ±3Ma,呈继承核,无环带(图3o),稀土配分模式显示轻稀土亏损,重稀土富集的特点,重稀土分异程度较小,(Yb/Gd)N=4.34 ~10.04,且具较弱的Eu 负异常和明显的Ce 正异常(图6a),为变质锆石。其余锆石具振荡环带(图3m,n,s),年龄为181±5Ma ~199 ±3Ma,稀土配分模式显示轻稀土亏损,重稀土明显富集的特点,重稀土分异程度较大,(Yb/Gd)N=17.81~73.42,且具明显的Eu 负异常和明显的Ce 正异常(图6a),这些特点表明该组锆石具有岩浆成因。但测点W2282-12(181 ±5Ma),具非常高的Ti 含量,Ti 为23008 ×10-6,稀土配分模式显示轻稀土含量很高,且无明显Ce 异常(图6a),说明锆石测点时可能打到富Ti 矿物和富轻稀土矿物包体,其表面年龄不能代表其结晶年龄。

三叠纪继承锆石Th/U 值很多都小于0.1(图5a),无环带且重稀土分异程度和ΣHREE 也存在差异(图6b),按其重稀土分异程度、ΣHREE 和Th/U 值大小和锆石显微结构分为三组:重稀土分异程度较大,(Yb/Gd)N= 20.58 ~101.8,ΣHREE 较高,为132.6 ×10-6~1008 ×10-6,Th/U 值为0.11~0.76,大于0.1(另有2 个Th/U 值小于0.1,但具震荡环带(图3p,q)),Nb/Ta 值0.56 ~3.74,多数具振荡环带,少量呈继承核,年龄为202 ±5Ma ~225 ±10Ma,具Eu 负异常和明显的Ce 正异常(图6b),表明其为岩浆锆石;重稀土分异程度稍小,(Yb/Gd)N=15.16 ~35.00,ΣHREE 稍小,为83.1 ×10-6~357.7 × 10-6,Th/U 值为0.01 ~0.35,Nb/Ta 值为0.88 ~3.19,呈继承核无环带(图3r,s),年龄为209 ±4Ma ~254 ±5Ma,具明显的Eu 负异常和明显的正Ce 异常(图6b),表明其为变质锆石;重稀土分异程度较小,相对平坦,(Yb/Gd)N=3.34 ~14.13,ΣHREE 很小,为10.4 ×10-6~46.3 ×10-6,Th/U 值为0.03 ~0.19,呈继承核无环带(图3t),年龄为217 ±4Ma ~255 ±8Ma,具Eu 负异常和明显的Ce 正异常(图6b),表明其为榴辉岩相变质锆石。另外测点W2282-11,年龄为208 ±4Ma,重稀土配分模式异常(图6b),与其他锆石明显不同,可能打到包体,不能代表锆石形成年龄。

古生代继承锆石或呈继承核无环带(图3v),或位于边部具振荡环带(图3u),年龄为260 ±7Ma ~487 ±9Ma,具较高Th/U 值,为0.14 ~0.94,稀土配分模式显示轻稀土亏损,重稀土富集的特点,(Yb/Gd)N=21.62 ~100.7。且具明显的Eu 负异常和明显的Ce 正异常(图6d),表明其为岩浆锆石。

表3 玲珑黑云母花岗岩继承锆石Hf 同位素分析结果Table 3 Hf isotopic compositions of inherited zircons from the the Linglong biotite granite

续表3Continued Table 3

新元古代继承锆石呈继承核(图3w,x),年龄为563 ±10Ma ~832 ±22Ma,具较高Th/U 值,为0.48 ~0.93,稀土配分模式显示轻稀土亏损,重稀土富集的特点,(Yb/Gd)N=18.70 ~27.67。且具Eu 负异常和明显的Ce 正异常(图6d),表明其为岩浆锆石。

4.2 Hf 同位素组成

只对其中U-Pb 年龄不谐和度小于5%的继承锆石的Hf同位素特征进行阐述,样品WES10D214B1 中继承锆石的176Lu/177Hf 比值介于0.000021 ~0.003170,176Hf/177Hf 介于0.281523 ~0.282657,εHf(t)值变化在-18.7 和0.8 之间,tDM2年龄为1204 ~2430Ma,另外4 个锆石存在异常高或低的εHf(t)值,对其数据可靠性,进行判断。表面年龄为2547 ±26Ma 的εHf(t)值为34.8(表3),远大于同时期亏损地幔的值,tDM2年龄远小于其形成年龄,所以获得的数据不可靠。年龄为256 ±4Ma 的锆石发生过蜕晶化,所测数据不可靠。而εHf(t)值为-35.9 和-36.1 的锆石都为变质锆石,tDM2年龄较大,分别为3543Ma 和3506Ma,因为发生变质重结晶的锆石年龄比原始锆石的结晶年龄小,但由于Lu-Hf 同位素体系的高稳定性,其Hf 同位素组成可能保持不变(Gerdes and Zeh,2009),因此当用变质重结晶年龄计算锆石tDM2年龄时,往往获得相对真实值高的tDM2年龄,因此无法判断数据的可靠性,对其不予讨论。

样品WES10D228B2 中继承锆石的176Lu/177Hf 比值介于0.000019 ~0.003842,176Hf/177Hf 介于0.281597 ~0.282782,εHf(t)值为-16.6 ~6.2 之间,tDM2年龄为894 ~2381Ma。另外εHf(t)值为-33.3 的锆石测点时打到边部锆石,所以数据不可靠。

5 讨论

图7 玲珑黑云母花岗岩继承锆石Th-U 投图(a)和谐和年龄分布频率图(b)图a 中纯色充填的为本文数据,所有锆石年龄数据不谐和度均<5%,对前人未列出谐和度的数据,利用公式:不谐和度=100 ×IF(206 Pb/238U Age <1000,(207Pb/235U Age)/(206Pb/238U Age)-1,(207Pb/206Pb Age)/(206Pb/238U Age)-1)进行计算,数据引自:Zhang et al. ,2003,2010;Jiang et al. ,2012;Yang et al. ,2012,2014d;Ma et al. ,2013Fig.7 Th vs. U plot (a)and relative probability plots of concordant U-Pb ages of inherited zircons from the Linglong biotite (b)the points in Fig.7a with solid filling are from this paper,the discordance of all the U-Pb ages are less than 5%,for the previous date without discordance,we calculate the discordance by using the follow formula:Discordance = 100 × IF(206 Pb/238 U Age <1000,(207 Pb/235 U Age)/(206Pb/238U Age)-1,(207Pb/206Pb Age)/(206Pb/238U Age)-1),reference:Zhang et al. ,2003,2010;Jiang et al. ,2012;Yang et al. ,2012,2014d;Ma et al. ,2013

对玲珑黑云母花岗岩继承锆石74 个分析点中,除不谐和度大于5%和上述说明锆石发生蜕晶化或测年时打到包体外,共61 个测点年龄都具意义,可以代表它们形成年龄或被改造年龄,可以很好地记录区域上先前发生的岩浆事件或变质事件。本文研究表明继承锆石记录了早侏罗世、晚三叠世、古生代、新元古代、~2.5Ga 的岩浆事件和早侏罗世、三叠纪、古生代的变质事件。为更好说明胶北地体的演化,再结合前人继承锆石年龄和Hf 同位素数据(Zhang et al.,2010;Yang et al.,2012,2014d;Jiang et al.,2012;Ma et al.,2013),结果表明(图7b)除上述热事件外,还存在2.9 ~2.7Ga,2.2 ~1.75Ga 的热事件。

2.9 ~2.7Ga 的继承锆石Th/U 值大于0.1(图7a),表明其可能为岩浆锆石,且前人也在胶北其他地质体获得这一时期的岩浆锆石年龄(Tang et al.,2007)。刘建辉等(2011)对胶北栖霞TTG 片麻岩进行锆石LA-ICP-MS U-Pb 定年获得2.9 ~2.7Ga 的谐和年龄,所测锆石具明显振荡环带,认为其为岩浆的结晶年龄。Jahn et al. (2008)对这一时期TTG 片麻岩进行岩石地球化学和Sm-Nd 同位素研究表明~2.9Ga TTG 形成于岛弧环境,而~2.7Ga TTG 与底侵作用和随后下地壳基性物质的部分熔融有关。这一时期的继承锆石εHf(t)值都为正值(图8a),表明寄主岩浆来源于亏损地幔,存在基性岩浆活动。另外~2.9Ga 和一个~2.7Ga 的继承锆石εHf(t)值与同时期亏损地幔值相近,并具与锆石结晶年龄相近的tDM2年龄(图8b),表明~2.9Ga 和~2.7Ga 存在新生地壳,以地壳的生长为主。前人系统地对TTG 片麻岩进行UPb 定年和Hf 同位素研究也表明胶北存在~2.9Ga 和~2.7Ga 两期主要的地壳生长事件(Liu et al.,2013a)。另外两个~2.7Ga 锆石,tDM2年龄为~3.0Ga,说明~2.7Ga 还存在地壳的重熔或再造。

继承锆石年龄分布直方图(图7b)表明~2.5Ga 存在小的峰值,其Th/U 值远大于0.1(图7a),本文发现的此时期继承锆石为岩浆锆石,说明该时期曾发生较强烈的岩浆事件。万渝生等(2012)对胶东岩群中角闪变粒岩进行SHRIMP 锆石U-Pb 定年发现~2.5Ga 的岩浆锆石和变质锆石,并限定胶东岩群形成于~2.5Ga。前人也曾在胶北发现大面积此时期TTG 片麻岩和花岗片麻岩,它们都经历了~2.5Ga 的变质事件(Tang et al.,2007;Jahn et al.,2008;刘建辉等,2011,2012;Liu et al.,2013a)。这与华北克拉通其他地区这一时期发生的岩浆活动和变质事件同时(万渝生等,2009;Geng et al.,2006)。~2.5Ga 的继承锆石εHf(t)值有正有负(图8a),tDM2年龄为2.7 ~3.4Ga(图8b),说明~2.5Ga 主要为更老地壳的改造,寄主岩浆源区存在幔源物质。前人对华北克拉通~2.5Ga 的变质事件研究表明变质演化呈现等压冷却的逆时针P-T 轨迹(Zhao et al.,2001;Zhao and Cawood,2012),而岩浆源区有地幔物质加入等特点说明~2.5Ga 的岩浆活动和变质事件可能为地幔柱导致的底侵作用有关的同一构造热事件(赵国春,2009;耿元生等,2010)。

图8 玲珑黑云母花岗岩继承锆石εHf(t)-t 图(a)和继承锆石Hf 同位素二阶段模式年龄分布直方图(b)所有锆石U-Pb 年龄数据不谐和度均<5%,前人数据引自:Zhang et al. ,2010;Jiang et al. ,2012;Yang et al. ,2012,2014d;Ma et al. ,2013Fig.8 εHf(t)versus U-Pb ages (a)and relative probability plots of tDM2 ages of inherited zircon from the Linglong biotite (b)the discordance of all the U-Pb ages are less than 5%,reference:Zhang et al. ,2010;Jiang et al. ,2012;Yang et al. ,2012,2014d;Ma et al. ,2013

本文发现年龄为古元古代的继承锆石,谐和度较差(表1),严重的铅丢失使其确切的形成年龄不得而知。但前人确实发现古元古代的继承锆石(图7b)。Wan et al. (2006)对荆山群片麻岩中碎屑锆石进行SHRIMP U-Pb 定年发现大量年龄为~2.2Ga 的碎屑岩浆锆石,并限定荆山群形成于2.2~1.9Ga。董春艳等(2011)对侵入荆山群的闪长岩进行SHRIMP U-Pb 定年获得1852 ±9Ma 的岩浆结晶年龄,并进一步限定荆山群形成于2.2 ~1.9Ga。另外在胶北地体还发现年龄为~2.1Ga 的花岗质片麻岩和变辉长岩,通过岩石地球化学研究表明其为荆山群沉积之前地壳拉张作用的产物(刘建辉等,2011;刘平华等,2013),双峰式的岩浆活动表明其可能形成于裂谷环境。而从图7a 可以看出很多古元古代(年龄显示为古元古代晚期)的继承锆石Th/U 值小于0.1,说明存在古元古代晚期存在一期变质事件,前人在胶东岩群、荆山群和TTG 片麻岩中也曾获得1.95 ~1.8Ga 变质年龄(刘平华等,2011;Liu et al.,2013a)。对胶北高压基性麻粒岩和高压泥质麻粒岩进行岩相学、矿物地球化学和年代学研究表明1.95 ~1.8Ga 的变质作用以等温降压顺时针的P-T-t 轨迹为特征,可能指示了碰撞造山的环境(Zhou et al.,2008a;Tam et al.,2011;Liu et al.,2013c)。古元古代的沉积建造、裂谷岩浆活动及碰撞造山作用,这些特点都与辽吉地区具有相似性,表明胶北地体应是辽吉地块向南延伸的一部分,它们曾共同经历了古元古代晚期与造山运动有关的变质作用(赵国春,2009;Zhou et al.,2008a;Tam et al.,2011)。华北东部地块以古元古代胶辽吉造山带为界分为龙岗地块与狼林地块(Wu et al.,2014)。Li et al. (2012)通过对荆山群和粉子山群的构造变形史研究,认为这期变质作用和龙岗地块与狼林地块碰撞事件有关。2.2 ~1.75Ga 锆石εHf(t)值变化范围较大,有正值和负值,表明存在此时期的基性岩,与上述这一时期变辉长岩的发现一致。锆石tDM2年龄约为1.7 ~3.6Ga,绝大多数锆石年龄和tDM2年龄相差较大(图8b),因此该时期主要表现为地壳的改造。图8b 中多数锆石的tDM2年龄集中于古元古代,说明古元古代存在地壳生长事件。但前人通过锆石Hf 同位素的研究表明华北东部古元古代大陆地壳的演化以地壳的重熔改造为主,缺乏同时期新生地壳(Tang et al.,2007;Geng et al.,2012;Liu et al.,2013b)。而对大别-苏鲁造山带花岗片麻岩和榴辉岩全岩Nd 同位素和锆石Hf 同位素研究表明扬子板块北缘存在古元古代的新生地壳(Zheng et al.,2006,2007a;Tang et al.,2008a;Zhao et al.,2008),在苏鲁超高压变质带也确实发现原岩年龄为2.2 ~1.8Ga 的斜长角闪岩和麻粒岩(刘福来等,2011;Liou et al.,2006),但大部分以零散的残留体形式出现。因此我们可以根据古元古代的继承锆石Hf 同位素特征来判断其来源。

从1.75Ga 一直到1.0Ga,该地区都处于岩浆活动的沉寂期,但在胶北分布一套古元古代末滨海相的沉积建造—芝罘群。Liu et al. (2013b)对芝罘群石英片岩中碎屑锆石进行LA-ICP-MS U-Pb 定年,发现最年轻的碎屑锆石年龄为1709Ma,说明芝罘群形成于晚于1.7Ga。初航等(2011)对蓬莱群辅子夼组碎屑锆石进行LA-MC-ICP-MS 锆石定年发现大量年龄为1.0 ~1.7Ga 的碎屑锆石,最年轻的年龄为986Ma,因此限定蓬莱群形成年代为新元古代。但胶北并不存在这一时期的岩浆热事件,甚至整个华北都没有十分强烈的这期地质事件的记录,表明有非华北的源区提供这一时期的碎屑物质(陆松年等,2012)。

大量继承锆石年龄集中于新元古代,其Th/U 值集中于1 附近(图7a),本文发现的新元古代年龄的继承锆石为岩浆锆石,说明这一时期存在强烈的岩浆活动,但胶北并不存在有关这期岩浆事件的地质记录。扬子板块北缘新元古代曾发生与Rodinia 超大陆裂解事件有关的岩浆活动(Zheng et al. ,2006,2007a;Deng et al.,2014)。在苏鲁超高压变质带也发现大量原岩年龄为新元古代的花岗片麻岩和变辉长岩(Liu et al.,2010;Tang et al.,2008a;刘福来等,2009),说明新元古代继承锆石来源于苏鲁地区,而花岗片麻岩和变辉长岩的发现说明当时存在双峰式岩浆活动,反映地壳拉张的环境,经大量研究表明此次岩浆活动可能与地幔柱有关的裂谷岩浆作用有关(Li et al.,2003;Zheng et al.,2006,2007a)。新元古代岩浆锆石εHf(t)值都为负值,锆石tDM2年龄为1832 ~1862Ma(表3;图8b),说明新元古代苏鲁地区主要为古元古代地壳的改造。

本文获得261 ~267Ma、398Ma 变质锆石年龄和260 ~487Ma 岩浆锆石年龄。古生代胶北处于平稳隆升剥蚀时期,并没有关于这一时期的构造热事件的记录(Deng et al.,2003b)。最近在苏鲁超高压变质带超高压变质岩中发现一些谐和年龄为古生代的继承锆石(Yang et al.,2003a;Liu and Liou,2011)。陈道公和倪涛(2004)对大别-苏鲁造山带榴辉岩和片麻岩中锆石进行微区离子探针分析也发现大量年龄为古生代的变质锆石,并发现很多古生代的变质锆石是年龄更老的锆石遭受不同程度的变质重结晶形成的,但确实存在273 ~184Ma 的变质锆石。万渝生等(2011)对经历高级变质作用的锆石研究发现,干岩石体系下发生高级变质作用可引起早期锆石发生固态重结晶,致使U-Pb 体系部分开放,但仍可获得谐和年龄,这些年龄介于早期锆石和变质作用年龄之间。因此我们推测获得的古生代变质锆石年龄可能为新远古代锆石于三叠纪发生部分变质重结晶造成。而二叠纪末的变质锆石年龄比三叠纪超高压变质作用时间早,表明它们可能记录了最初扬子板块和华北克拉通之间的俯冲事件(Zhou et al.,2008b)。另外杨经绥等(2007)也在苏鲁地区大陆深钻主孔发现原岩年龄为346 ~461Ma 超镁铁岩,因此苏鲁地区曾经存在早古生代岩浆事件。古生代岩浆锆石εHf(t)值都为负值,锆石tDM2年龄为1869 ~2381Ma(表3;图8b),说明古生代苏鲁地区主要为古元古代地壳的改造。

锆石显微结构和微量元素研究表明,三叠纪存在岩浆锆石和变质锆石,说明区内存在此时期的岩浆活动和变质作用。但胶北并没有这一时期的地质体,而苏鲁超高压变质带以广泛分布三叠纪超高压变质岩为特点(Liou et al.,2012;Liu et al.,2012)。对超高压变质岩大量的岩相学、矿物学、矿物地球化学和年代学研究表明256 ~225Ma 发生榴辉岩相变质作用(Liu et al.,2006,2011;Liou et al.,2012;Xu et al.,2013),之后超高压变质岩快速抬升(李曙光等,2005;王清晨,2013),于215 ~201Ma 发生角闪岩相退变质(刘福来和薛怀民,2007;Liu et al.,2010)。对超高压变质岩中锆石继承核U-Pb 定年表明其原岩主要为扬子板块北缘新元古代岩浆岩(Tang et al.,2008b;Liu and Liou,2011)。新元古代岩浆锆石年龄和三叠纪变质锆石年龄是扬子板块区别于华北克拉通的两个重要特点(Zheng and Zhang,2007;Tang et al.,2007,2008a),玲珑黑云母花岗岩中存在大量新元古代和三叠纪继承锆石说明中生代时胶北地壳深部存在有来自扬子板块的陆壳物质,大陆的俯冲极性为扬子板块向华北克拉通,它们于三叠纪发生碰撞。另外苏鲁超高压变质带还出露三叠纪碱性杂岩体,对其进行大量的年代学表明岩石的形成年龄为225 ~201Ma(Chen et al.,2003;Yang et al.,2005)。本文所获这一时期的岩浆锆石εHf(t)值为-17.5 ~-7.7,表现出富集的特征,反映继承锆石寄主岩石三叠纪碱性岩源区有来源于富集地幔的物质,前人对三叠纪碱性岩岩石地球化学和同位素地球化学研究表明其成因与扬子板块岩石圈富集地幔源区及部分扬子陆壳共同的部分熔融有关(陈竟志和姜能,2011;Zhao et al.,2012;Yang et al.,2005)。三叠纪岩浆锆石tDM2年龄为1745 ~2360Ma(表3;图8b),说明三叠纪苏鲁地区主要为古元古代地壳的改造。

本文发现大量谐和年龄为早侏罗世的继承锆石,锆石显微结构和微量元素研究表明,存在此时期的岩浆锆石和变质锆石。胶北并未发现这一时期的地质体。前文已提及在大别-苏鲁造山带变质岩中发现早侏罗世的变质锆石(陈道公和倪涛,2004),Zheng et al. (2007b)对大别造山带蓝晶石-石英脉锆石LA-ICP-MS 定年中也获得~180Ma 锆石年龄,认为它记录了晚三叠纪碰撞造山后一期热事件。前人通过对大别-苏鲁造山带超高压变质岩P-T-t 轨迹,并结合区域变形分析表明超高压变质岩自三叠纪碰撞造山作用形成后,发生了多阶段折返,于180Ma 左右发生过快速折返(李曙光等,2005;王清晨,2013)。因此超高压岩石经历了快速的降温降压作用,其中的含水矿物变得不稳定,发生脱水作用,形成流体。而锆石在流体存在的情况下,容易发生重结晶(Tomaschek et al.,2003),因此本文发现的大量早侏罗世继承锆石,可能为三叠纪锆石于~180Ma 发生重结晶形成。

综上所述,晚侏罗世玲珑黑云母花岗岩中存在中太古代-晚侏罗世多个时期的继承锆石,这种多样的继承锆石组成反映其岩浆源区极其复杂(同时存在华北克拉通与扬子板块物质);可能与前寒武纪岩石在三叠纪被卷入扬子与华北陆-陆碰撞事件,在造山作用过程中被再循环带入地壳深部,而后在晚侏罗世发生地壳重熔有关。

6 结论

~2.9Ga 为胶北地壳的生长时期,岩浆作用形成于岛弧环境;~2.7Ga 也为地壳的生长时期,岩浆活动与下地壳基性物质的部分熔融有关;~2.5Ga 主要为地壳的改造,此外还发生同时期的变质事件,与地幔柱底侵作用有关,另有表壳岩组合-胶东岩群形成;2.2 ~1.8Ga 主要为老地壳的重熔改造,其中~2.1Ga 地壳处于拉张状态,伴有与陆内裂谷活动有关的双峰式岩浆作用,荆山群和粉子山群开始沉积,而后1.95 ~1.8Ga 由于碰撞造山运动,发生变质作用;~1.7Ga发生滨海相沉积事件,形成芝罘群;中元古代到古生代胶北地体处于岩浆活动的沉寂期,只在~1.0Ga 发生沉积事件,形成蓬莱群,而扬子板块北缘新元古代发育与地幔柱有关的裂谷岩浆作用;二叠纪末扬子板块向北俯冲于华北克拉通之下,三叠纪与华北克拉通发生陆陆碰撞,致使扬子板块北缘新元古代花岗岩发生超高压变质,形成苏鲁超高压变质带,之后超高压变质岩发生多阶段折返;晚侏罗世玲珑黑云母花岗岩复杂的继承锆石组成可能与前寒武纪岩石卷入陆-陆碰撞事件而发生再循环有关。

致谢 研究工作得到了中国地质大学(北京)王中亮老师的指导与帮助;野外工作得到了望儿山金矿床相关工作人员的帮助和支持;同位素实验工作得到了中国地质大学(北京)地学实验中心激光等离子体质谱实验室相关工作人员的协助;研究生郭林楠、张良、刘跃、李瑞红参加了部分研究工作;在此一并致以诚挚的感谢!

Belousova E,Griffin WL,O’Reilly SY and Fisher NL. 2002. Igneous zircon:Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology,143(5):602-622

Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters,148(1 -2):243 -258

Chen DG and Ni T. 2004. Th and Pb characteristics of high-grade metamorphic rocks from Dabie-Sulu orogen. Acta Petrologica Sinica,20(5):999 -1006 (in Chinese with English abstract)

Chen JF,Xie Z,Li HM,Zhang XD,Zhou TX,Park YS,Ahn KS,Chen DG and Zhang X. 2003. U-Pb zircon ages for a collision-related Krich complex at Shidao in the Sulu ultrahigh pressure terrane,China.Geochemical Journal,37(1):35 -46

Chen JZ and Jiang N. 2011. Petrogenesis of the Late-Triassic alkaline magmatism in the Jiaodong area:Evidence from U-Pb age,Hf-O isotopes of zircons. Acta Petrologica Sinica,27(12):3557 -3574(in Chinese with English abstract)

Chu H,Lu SN,Wang HC,Xiang ZQ and Liu H. 2011. U-Pb age spectrum of detrital zircons from the Fuzikuang Formation,Penglai Group in Changdao,Shandong Province. Acta Petrologica Sinica,27(4):1017 -1028 (in Chinese with English abstract)

Deng J,Zhai YS,Wang JP,Yang LQ,Fan Y and Sun ZS. 2000. Shear alteration,mass transfer and gold mineralization:An example from Jiaodong ore deposit concentrating area,Shandong,China. Journal of China University of Geoscience,11(3):281 -287

Deng J,Fang Y,Yang LQ,Yang JC,Sun ZS,Wang JP,Ding SJ and Wang QF. 2001. Numerical modelling of ore-forming dynamics of fractal dispersive fluid systems. Acta Geologica Sinica,75(2):220-232

Deng J,Li W,Sun ZS,Wang JP,Wang QF,Zhang QX and Wei YG.2003a. Evidence of mantle-rooted fluids and multi-level circulation ore-forming dynamics:A case study from the Xiadian gold deposit,Shandong Province,China. Science in China (Series D),46(1):123 -134

Deng J,Yang LQ,Sun ZS,Wang JP,Wang QF,Xin HB and Li XJ.2003b. A metallogenic model of gold deposits of the Jiaodong granite-greenstone belt. Acta Geologica Sinica,77(4):537 -546

Deng J,Wang QF,Yang LQ,Wang JP,Gao BF and Liu T. 2004. The geological settings to the gold metallogeny in northwestern Jiaodong Peninsula,Shandong Province. Earth Science Frontiers,11(4):527 -533 (in Chinese with English abstract)

Deng J,Yang LQ,Ge LS,Wang QF,Zhang J,Gao BF,Zhou YH and Jiang SQ. 2006. Research advances in the Mesozoic tectonic regimes during the formation of Jiaodong ore cluster area. Progress in Natural Science,16(8):777 -784

Deng J,Wang QF,Yang LQ,Zhou L,Gong QJ,Yuan WM,Xu H,Guo CY and Liu XW. 2008. The structure of ore-controlling strain and stress fields in the Shangzhuang gold deposit in Shandong Province,China. Acta Geologica Sinica,82(4):769 -780

Deng J,Wang QF,Wan L,Yang LQ,Gong QJ,Zhao J and Liu H.2009. Self-similar fractal analysis of gold mineralization of Dayingezhuang disseminated-veinlet deposit in Jiaodong gold province,China. Journal of Geochemical Exploration,102(2):95-102

Deng J,Chen YM,Liu Q and Yang LQ. 2010. The Gold Metallogenic System and Mineral Resources Exploration of Sanshandao Fault Zone,Shandong Province. Beijing:Geological Publishing House,1-371 (in Chinese)

Deng J,Wang QF,Wan L,Liu H,Yang LQ and Zhang J. 2011. A multifractal analysis of mineralization characteristics of the Dayingezhuang disseminated-veinlet gold deposit in the Jiaodong gold province of China. Ore Geology Reviews,40(1):54 -64

Deng J,Wang QF,Li GJ and Santosh M. 2014. Cenozoic tectonomagmatic and metallogenic processes in the Sanjiang region,southwestern China. Earth-Science Reviews,DOI:10. 1016/j.earscirev.2014.05.015

Dong CY,Wang SJ,Liu DY,Wang JG,Xie HQ,Wang W,Song ZY and Wan YS. 2011. Late Palaeoproterozoic crustal evolution of the North China Craton and formation time of the Jingshan Group:Constraints from SHRIMP U-Pb zircon dating of meta-intermediatebasic intrusive rocks in eastern Shandong Province. Acta Petrologica Sinica,27(6):1699 -1706 (in Chinese with English abstract)

Geisler T,Ulonska M,Schleicher H,Pidgeon RT and van Bronswijk W.2001. Leaching and differential recrystallization of metamict zircon under experimental hydrothermal conditions. Contributions to Mineralogy and Petrology,141(1):53 -65

Geng YS,Liu FL and Yang CH. 2006. Magmatic event at the end of the Archean in eastern Hebei Province and its geological implication.Acta Geologica Sinica,80(6):819 -833

Geng YS,Shen QH and Ren LD. 2010. Late Neoarchean to Early Paleoproterozoic magmatic events and tectonothermal systems in the North China Craton. Acta Petrologica Sinica,26(7):1945 -1966(in Chinese with English abstract)

Geng YS,Du LL and Ren LG. 2012. Growth and reworking of the Early Precambrian continental crust in the North China Craton:Constraints from zircon Hf isotopes. Gondwana Research,21(2 -3):517 -529 Gerdes A and Zeh A. 2009. Zircon formation versus zircon alteration:New insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses,and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chemical Geology,261(3 -4):230 -243

Griffin WL,Pearson NJ,Belousova E,Jackson SE,Van Achterbergh E,O’Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta,64(1):133 -147

Griffin WL,Wang X,Jackson SE,Pearson NJ,O’Reilly SY,Xu XS and Zhou XM. 2002. Zircon chemistry and magma mixing,SE China:In-situ analysis of Hf isotopes,Tonglu and Pingtan igneous complexes. Lithos,61(3 -4):237 -269

Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of metamorphic Geology,18(4):423 -439

Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry,53(1):27 -62

Hou KJ,Li YH,Zou TH,Qu XM,Shi YR and Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica,23(10):2595 -2604 (in Chinese with English abstract)

Jahn BM,Liu DY,Wan YS,Song B and Wu JS. 2008. Archean crustal evolution of the Jiaodong Peninsula,China,as revealed by zircon SHRIMP geochronology,elemental and Nd-isotope geochemistry.American Journal of Science,308(3):232 -269

Ji ZY. 1993. New data on isotope age of the Proterozoic metamorphic rocks from northern Jiaodong and its geological significance. Geology of Shandong,9(1):43 -51 (in Chinese with English abstract)

Jiang N,Chen JZ,Guo JH and Chang GH. 2012. In situ zircon U-Pb,oxygen and hafnium isotopic compositions of Jurassic granites from the North China craton: Evidence for Triassic subduction of continental crust and subsequent metamorphism-related18O depletion. Lithos,142:84 -94

Li SG,Li QL,Hou ZH,Yang W and Wang Y. 2005. Cooling history and exhumation mechanism of the ultrahigh-pressure metamorphic rocks in the Dabie Mountains,central China. Acta Petrologica Sinica,21(4):1117 -1124 (in Chinese with English abstract)

Li SZ,Zhao GC,Santosh M,Liu X,Dai LM,Suo YH,Tam PY,Song MC and Wang PC. 2012. Paleoproterozoic structural evolution of the southern segment of the Jiao-Liao-Ji Belt,North China Craton.Precambrian Research,200:59 -73

Li ZX,Li XH,Kinny PD,Wang J,Zhang S and Zhou H. 2003.Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton,South China and correlations with other continents:Evidence for a mantle superplume that broke up Rodinia. Precambrian Research,122(1 -4):85 -109

Liou JG,Tsujimori T,Chu W,Zhang RY and Wooden JL. 2006.Protolith and metamorphic ages of the Haiyangsuo Complex,eastern China:A non-UHP exotic tectonic slab in the Sulu ultrahigh-pressure terrane. Mineralogy and Petrology,88(1 -2):207 -226

Liou JG,Zhang RY,Liu FL,Zhang ZM and Ernst WG. 2012.Mineralogy,petrology,U-Pb geochronology,and geologic evolution of the Dabie-Sulu classic ultrahigh-pressure metamorphic terrane,East-Central China. American Mineralogist,97(10):1533 -1543

Liu FL,Xu ZQ,Liou JG and Song B. 2004. SHRIMP U-Pb ages of ultrahigh-pressure and retrograde metamorphism of gneisses,southwestern Sulu terrane,eastern China. Journal of Metamorphic Geology,22(4):315 -326

Liu FL,Gerdes A,Liou JG,Xue HM and Liang FH. 2006. SHRIMP UPb zircon dating from Sulu-Dabie dolomitic marble,eastern China:Constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. Journal of Metamorphic Geology,24(7):569-589

Liu FL and Xue HM. 2007. Review and prospect of SHRIMP U-Pb dating on zircons from Sulu-Dabie UHP metamorphic rocks. Acta Petrologica Sinica,23(11):2737 -2756 (in Chinese with English abstract)

Liu FL and Liu PH. 2009. U-Pb dating,trace element and Hf isotopic characteristics of zircons from meta-gabbro in Yangkou area,North Sulu UHP terrane. Acta Petrologica Sinica,25(9):2113 -2131(in Chinese with English abstract)

Liu FL,Robinson PT,Gerdes A,Xue HM,Liu PH and Liou JG. 2010.Zircon U-Pb ages,REE concentrations and Hf isotope compositions of granitic leucosome and pegmatite from the north Sulu UHP terrane in China:Constraints on the timing and nature of partial melting.Lithos,117(1 -4):247 -268

Liu FL and Liou JG. 2011. Zircon as the best mineral for P-T-time history of UHP metamorphism:A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks.Journal of Asian Earth Sciences,40(1):1 -39

Liu FL,Shi JR,Liu JH,Ye JG,Liu PH and Wang F. 2011. Protolith and ultranhigh-pressure (UHP)metamorphic ages of ultramafic rocks in Weihai area,North Sulu UHP terrane. Acta Petrologica Sinica,27(4):1075 -1084 (in Chinese with English abstract)

Liu FL,Robinson PT and Liu PH. 2012. Multiple partial melting events in the Sulu UHP terrane:Zircon U-Pb dating of granitic leucosomes within amphibolite and gneiss. Journal of Metamorphic Geology,30(8):887 -906

Liu JH,Liu FL,Liu PH,Wang F and Ding ZJ. 2011. Polyphase magmatic and metamorphic events from Early Precambrian metamorphic basement in Jiaobei area:Evidences from the zircon UPb dating of TTG and granitic gneisses. Acta Petrologica Sinica,27(4):943 -960 (in Chinese with English abstract)

Liu JH,Liu FL,Ding ZJ,Liu PH,Wang F and You JJ. 2012. The zircon Hf isotope characteristics of ~2.5Ga magmatic event and implication for the crustal evolution in the Jiaobei terrane,China.Acta Petrologica Sinica,28(9):2697 - 2704 (in Chinese with English abstract)

Liu JH,Liu FL,Ding ZJ,Liu CH,Yang H,Liu PH,Wang F and Meng E. 2013a. The growth,reworking and metamorphism of Early Precambrian crust in the Jiaobei terrane,the North China Craton:Constraints from U-Th-Pb and Lu-Hf isotopic systematics,and REE concentrations of zircon from Archean granitoid gneisses.Precambrian Research,224:287 -303

Liu JH,Liu FL,Ding ZJ,Yang H,Liu CH,Liu PH,Xiao LL,Zhao L and Geng JZ. 2013b. U-Pb dating and Hf isotope study of detrital zircons from the Zhifu Group,Jiaobei Terrane,North China Craton:Provenance and implications for Precambrian crustal growth and recycling. Precambrian Research,235:230 -250

Liu PH,Liu FL,Wang F and Liu JH. 2011. Genetic characteristcs of the ultramafic rocks from the Early Precambrian high-grade metamorphic basement in Shandong Peninsula, China. Acta Petrologica Sinica,27(4):922 - 942 (in Chinese with English abstract)

Liu PH,Liu FL,Liu CH,Wang F,Liu JH,Yang H,Cai J and Shi J.2013c. Petrogenesis,P-T-t path,and tectonic significance of highpressure mafic granulites from the Jiaobei terrane,North China Craton. Precambrian Research,233:237 -258

Liu PH,Liu FL,Wang F,Liu JH and Cai J. 2013. Petrological and geochronological preliminary study of the Xiliu ~2.1Ga meta-gabbro from the Jiaobei terrane,the southern segment of the Jiao-Liao-Ji Belt in the North China Craton. Acta Petrologica Sinica,29(7):2371 -2390 (in Chinese with English abstract)

Liu Y,Deng J,Wang ZL,Zhang L,Zhang C,Liu XD,Zheng XL and Wang XD. 2014. Zircon U-Pb age, Lu-Hf isotopes and petrogeochemistry of the monzogranites from Xincheng gold deposit,northwestern Jiaodong Peninsula,China. Acta Petrologica Sinica,30(9):2559 -2573 (in Chinese with English abstract)

Lu SN,Xiang ZQ,Li HK,Wang HC and Chu H. 2012. Response of the North China Craton to Rodinia supercontinental events:GOSEN Joining Hypothesis. Acta Geologica Sinica,86(9):1396 - 1406(in Chinese with English abstract)

Ma L,Jiang SY,Dai BZ,Jiang YH,Hou ML,Pu W and Xu B. 2013.Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula,eastern China:Zircon U-Pb geochronological,geochemical and Sr-Nd-Hf isotopic evidence.Lithos,162:251 -263

Rubatto D. 2002. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology,184(1 -2):123 -138

Shen QH. 2008. Further discussion on the new progress in the study of Early Precambrian stratigraphy of China. Journal of Stratigraphy,32(3):231 -238 (in Chinese with English abstract)

Siebel W,Schmitt AK,Danišík M,Chen F,Meier S,Weiß S and Eroglu S. 2009. Prolonged mantle residence of zircon xenocrysts from the western Eger rift. Nature Geoscience,2(12):886 -890

Song SG,Niu YL,Wei CJ,Ji JQ and Su L. 2010. Metamorphism,anatexis,zircon ages and tectonic evolution of the Gongshan block in the northern Indochina continent:An eastern extension of the Lhasa Block. Lithos,120(3 -4):327 -346

Sun SS and McDonough WF. 1989. Chemical and isotope systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society,London,Special Publications,42(1):313 -345

Tam PY,Zhao GC,Liu FL,Zhou XW,Sun M and Li SZ. 2011. Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt:New SHRIMP U-Pb zircon dating of granulites,gneisses and marbles of the Jiaobei massif in the North China Craton. Gondwana Research,19(1):150 -162

Tang J,Zheng YF,Wu YB,Gong B and Liu XM. 2007. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane:Constraints on its tectonic affinity in the Sulu orogen. Precambrian Research,152(1 -2):48 -82

Tang J,Zheng YF,Wu YB,Gong B,Zha XP and Liu XM. 2008a.Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen,China. Precambrian Research,161(3 -4):389 -418

Tang J,Zheng YF,Gong B,Wu YB,Gao TS,Yuan H and Wu FY.2008b. Extreme oxygen isotope signature of meteoric water in magmatic zircon from metagranite in the Sulu orogen,China:Implications for Neoproterozoic rift magmatism. Geochimica et Cosmochimica Acta,72(13):3139 -3169

Tomaschek F,Kennedy AK,Villa IM,Lagos M and Ballhaus C. 2003.Zircons from Syros, Cyclades, Greece: Recrystallization and mobilization of zircon during high-pressure metamorphism. Journal of Petrology,44(11):1977 -2002

Wan YS,Song B,Liu DY,Wilde SA,Wu J,Shi YR,Yin XY and Zhou HY. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton:Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research,149(3 -4):249 -271

Wan YS,Liu DY,Wang SY,Zhao X,Dong CY,Zhou HY,Yin XY,Yang CX and Gao LZ. 2009. Early Precambrian crustal evolution in the Dengfeng area,Henan Province (eastern China):Constraints from geochemistry and SHRIMP U-Pb zircon dating. Acta Geologica Sinica,83(7):982 -999 (in Chinese with English abstract)

Wan YS,Liu DY,Dong CY,Liu SJ,Wang SJ and Yang EX. 2011. The impact of high-grade metamorphism on the U-Th-Pb system of zircons:A case study of zircon dating of meta-diorite in Qixia area,eastern Shandong. Earth Science Frontiers,18(2):17 - 25 (in Chinese with English abstract)

Wan YS,Dong CY,Xie HQ,Wang SJ,Song MC,Xu ZY,Wang SY,Zhou HY,Ma MZ and Liu DY. 2012. Formation ages of Early Precambrian BIFs in the North China craton:SHRIMP zircon U-Pb dating. Acta Geologica Sinica,86(9):1447 -1478 (in Chinese with English abstract)

Wang LG,Qiu YM,McNaughton NJ,Groves DI,Luo ZK,Huang JZ and Liu YK. 1998. Constraints on crustal evolution and gold metallogeny in the northwestern Jiaodong Peninsula,China,from SHRIMP U-Pb zircon studies of granitoids. Ore Geology Reviews,13(1):275-291

Wang QC. 2013. Exhumation of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie Orogenic Belt. Acta Petrologica Sinica,29(5):1607 -1620 (in Chinese with English abstract)

Wang SJ,Wan YS,Zhang CJ,Yang EX,Song ZY,Wang LF and Wang JG. 2009. Forming ages of Early Precambrian metamorphic strata in Shandong Province: Proofs of Zircon SHRIMP U-Pb dating.Shandong Land and Resources,25(10):18 -24 (in Chinese with English abstract)

Wang ZL,Gong QJ,Sun X,Wu FF and Wang WX. 2012. LA-ICP-MS zircon U-Pb geochronology of quartz porphyry from the Niutougou gold deposit in Songxian County,Henan Province. Acta Geologica Sinica,86(2):370 -382

Wang ZL,Yang LQ,Deng J,Santosh M,Zhang HF,Liu Y,Li RH,Huang T,Zheng XL and Zhao H. 2014. Gold-hosting high Ba-Sr granitoids in the Xincheng gold deposit,Jiaodong Peninsula,East China:Petrogenesis and tectonic setting. Journal of Asian Earth Sciences,doi:10.1016/j.jseaes.2014.03.001

Wu ML,Zhao GC,Sun M,Bao Z,Tam PK and He YH. 2014. Tectonic affinity and reworking of the Archaean Jiaodong Terrane in the Eastern Block of the North China Craton:Evidence from LA-ICP-MS U-Pb zircon ages. Geological Magazine,151(2):365 -371

Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin,49(16):1554-1569

Xu HJ,Ye K,Song YR,Chen Y,Zhang JF,Liu Q and Guo S. 2013.Prograde metamorphism, decompressional partial melting and subsequent melt fractional crystallization in the Weihai migmatitic gneisses,Sulu UHP terrane,eastern China. Chemical Geology,341:16 -37

Yang JH,Chung SL,Wilde SA,Wu FY,Chu MF,Lo CH and Fan HR.2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt,East China:Geochronological,geochemical and Nd-Sr isotopic evidence. Chemical Geology,214(1 -2):99 -125

Yang JH and Wu FY. 2009. Triassic magmatism and its relation to decratonization in the eastern North China Craton. Science in China(Series D),52(9):1319 -1330

Yang JS,Wooden JL,Wu CL,Liu FL,Xu ZQ,Shi RD,Katayama I,Liou JG and Maruyama S. 2003a. SHRIMP U-Pb dating of coesitebearing zircon from the ultrahigh-pressure metamorphic rocks,Sulu terrane,East China. Journal of Metamorphic Geology,21(6):551-560

Yang JS,Li TF,Liang FH,Wu CL and Li YS. 2007. Garnet peridotite in CCSD-MH in the Sulu UHPM belt:A deep subducted Paleozoic ultramafic intrusion. Acta Petrologica Sinica,23(12):3153 -3170(in Chinese with English abstract)

Yang KF,Fan HR,Santosh M,Hu FF,Wilde SA,Lan TG,Lu LN and Liu YS. 2012. Reactivation of the Archean lower crust:Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of Late Mesozoic granitoids from northwestern Jiaodong Terrane,the North China Craton. Lithos,146 -147:112 -127

Yang LQ,Wang GJ,Zhang ZJ,Deng J,Zhao AH and Wang JP. 2000.Lithospheric structure and deep-seated mineralization in Jiaodong gold deposit concentration region,Shandong,China. Earth Science,25(4):421 -427(in Chinese with English abstract)

Yang LQ,Deng J,Zhang ZJ,Wang GJ and Wang JP. 2003b. Crustmantle structure and coupling effects on mineralization:An example from Jiaodong Gold Ore Deposits Concentrating Area,China. Journal of China University of Geosciences,14(1):42 -51

Yang LQ,Deng J,Wang JG and Wei YG. 2004. Control of deep tectonics on the superlarge deposits in China. Acta Geologica Sinica,78(2):358 -367

Yang LQ,Deng J,Wang QF and Zhou YH. 2006. Coupling effects on gold mineralization of deep and shallow structures in the northwestern Jiaodong Peninsula,eastern China. Acta Geologica Sinica,80(3):400 -411

Yang LQ,Deng J,Ge LS,Wang QF,Zhang J,Gao BF,Jiang SQ and Xu H. 2007a. Metallogenic epoch and genesis of gold ore deposits in Jiaodong Peninsula,eastern China:A regional review. Progress in Natural Sciences,17(2):138 -143

Yang LQ,Deng J,Zhang J,Wang QF,Ge LS,Zhou YH,Guo CY and Jiang SQ. 2007b. Preliminary studies of fluid inclusions in Damoqujia gold deposit along Zhaoping fault zone,Shandong Province,China. Acta Petrologica Sinica,23(1):153 -160

Yang LQ,Deng J,Zhang J,Guo CY,Gao BF,Gong QJ,Wang QF,Jiang SQ and Yu HJ. 2008. Decrepitation thermometry and compositions of fluid inclusions of the Damoqujia gold deposit,Jiaodong gold province,China:Implications for metallogeny and exploration. Journal of China University of Geosciences,19(4):378 -390

Yang LQ,Deng J,Guo CY,Zhang J,Jiang SQ,Gao BF,Gong QJ and Wang QF. 2009. Ore-forming fluid characteristics of the Dayingezhuang gold deposit, Jiaodong gold province, China.Resource Geology,59(2):181 -193

Yang LQ and Badal J. 2013. Mirror symmetry of the crust in the oil/gas region of Shengli,China. Journal of Asian Earth Sciences,78:327-344

Yang LQ,Deng J,Goldfarb RJ,Zhang J,Gao BF and Wang ZL. 2014c.40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit:New implications for timing and duration of hydrothermal activity in the Jiaodong gold province,China. Gondwana Research,25(4):1469 -1483

Yang LQ,Deng J and Wang ZL. 2014a. Ore-controlling structural pattern of Jiaodong gold deposits: Geological-geophysical integration constraints. In:Chen YT,Jin ZM,Shi YL,Yang WC and Zhu RX(eds.). The Deep-seated Structures of Earth in China. Beijing:Sciences Press,1006 -1030 (in Chinese)

Yang LQ,Deng J,Wang ZL,Zhang L,Guo LN,Song MC and Zheng XL. 2014b. Mesozoic gold metallogenic system of the Jiaodong gold province,eastern China. Acta Petrologica Sinica,30(9):2447 -2467 (in Chinese with English abstract)

Yang QY,Santosh M,Shen JF and Li SR. 2014d. Juvenile vs. recycled crust in NE China:Zircon U-Pb geochronology,Hf isotope and an integrated model for Mesozoic gold mineralization in the Jiaodong Peninsula. Gondwana Research,25(4):1445 -1468

Zhang J,Zhao ZF,Zheng YF and Dai MN. 2010. Postcollisional magmatism:Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen,China. Lithos,119(3 - 4):512-536

Zhang XO,Cawood PA,Wilde SA,Liu R,Song H,Li W and Snee LW.2003. Geology and timing of mineralization at the Cangshang gold deposit, northwestern Jiaodong Peninsula, China. Mineralium Deposita,38(2):141 -153

Zhang YQ,Li JL,Zhang T and Yuan JY. 2007. Late Mesozoic Kinematic history of the Muping-Jimo fault zone in Jiaodong Peninsula,Shandong Province,East China. Geological Review,53(3):289 -300 (in Chinese with English abstract)

Zhao GC,Wilde SA,Cawood PA and Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological,geochemical,structural,and P-T path constrains and tectonic evolution. Precambrian Research,107(1 -2):45 -73

Zhao GC. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton:Key issues and discussion.Acta Petrologica Sinica,25(8):1772 - 1792 (in Chinese with English abstract)

Zhao GC and Cawood PA. 2012. Precambrian geology of China.Precambrian Research,222 -223:13 -54

Zhao ZF,Zheng YF,Wei CS,Chen FK,Liu X and Wu FY. 2008.Zircon U-Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China.Chemical Geology,253(3):222 -242

Zhao ZF,Zheng YF,Zhang J,Dai LQ,Li Q and Liu X. 2012. Synexhumation magmatism during continental collision:Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chemical Geology,328:70 -88

Zheng YF,Zhao ZF,Wu YB,Zhang SB,Liu X and Wu FY. 2006.Zircon U-Pb age,Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chemical Geology,231(1):135 -158

Zheng YF and Zhang SB. 2007. Formation and evolution of Precambrian continental crust in South China. Chinese Science Bulletin,52(1):1 -12

Zheng YF,Zhang SB,Zhao ZF,Wu YB,Li X,Li Z and Wu FY.2007a. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:Implications for growth and reworking of continental crust. Lithos,96(1 -2):127 -150

Zheng YF,Gao TS,Wu YB,Gong B and Liu XM. 2007b. Fluid flow during exhumation of deeply subducted continental crust:Zircon UPb age and O-isotope studies of a quartz vein within ultrahighpressure eclogite. Journal of Metamorphic Geology,25(2):267-283

Zhou JB,Wilde SA,Zhao GC,Zheng CQ,Jin W,Zhang XZ and Cheng H. 2008b. Detrital zircon U-Pb dating of low-grade metamorphic rocks in the Sulu UHP belt:Evidence for overthrusting of the North China Craton onto the South China Craton during continental subduction. Journal of the Geological Society,165(1):423 -433

Zhou XW,Zhao GC,Wei CJ,Geng YS and Sun M. 2008a. EPMA UTh-Pb monazite and SHRIMP U-Pb zircon geochronology of highpressure pelitic granulites in the Jiaobei massif of the North China Craton. American Journal of Science,308(3):328 -350

附中文参考文献

陈道公,倪涛. 2004. 大别-苏鲁造山带高级变质岩中锆石微区U、Th和Pb 化学组成特征统计. 岩石学报,20(5):999 -1006

陈竟志,姜能. 2011. 胶东晚三叠世碱性岩浆作用的岩石成因——来自锆石U-Pb 年龄,Hf-O 同位素的证据. 岩石学报,27(12):3557 -3574

初航,陆松年,王惠初,相振群,刘欢. 2011. 山东长岛地区蓬莱群辅子夼组碎屑锆石年龄谱研究. 岩石学报,27(4):1017 -1028

邓军,王庆飞,杨立强,王建平,高帮飞,刘琰. 2004. 胶西北金矿集区成矿作用发生的地质背景. 地学前缘,11(4):527 -533

邓军,陈玉民,刘钦,杨立强. 2010. 胶东三山岛断裂带金成矿系统与资源勘查. 北京:地质出版社,1 -371

董春艳,王世进,刘敦一,王金光,颉颃强,王伟,宋志勇,万渝生.2011. 华北克拉通古元古代晚期地壳演化和荆山群形成时代制约——胶东地区变质中-基性侵入岩锆石SHRIMP U-Pb 定年.岩石学报,27(6):1699 -1706

耿元生,沈其韩,任留东. 2010. 华北克拉通晚太古代末-古元古代初的岩浆事件及构造热体制. 岩石学报,26(7):1945 -1966

侯可军,李延河,邹天人,曲晓明,石玉若,谢桂青. 2007. LA-MCICP-MS 锆石Hf 同位素的分析方法及地质应用. 岩石学报,23(10):2595 -2604

纪壮义. 1993. 胶北元古界变质岩的同位素测年新成果及其地质意义. 山东地质,9(1):43 -51

李曙光,李秋立,侯振辉,杨蔚,王莹. 2005. 大别山超高压变质岩的冷却史及折返机制. 岩石学报,21(4):1117 -1124

刘福来,薛怀民. 2007. 苏鲁-大别超高压岩石中锆石SHRIMP U-Pb定年研究——综述和最新进展. 岩石学报,23(11):2737-2756

刘福来,刘平华. 2009. 北苏鲁仰口地区变辉长岩中锆石U-Pb 定年、微量元素和Hf 同位素特征及其地质意义. 岩石学报,25(9):2113 -2131

刘福来,施建荣,刘建辉,叶建国,刘平华,王舫. 2011. 北苏鲁威海地区超基性岩的原岩形成时代和超高压变质时代. 岩石学报,27(4):1075 -1084

刘建辉,刘福来,刘平华,王舫,丁正江. 2011. 胶北早前寒武纪变质基底多期岩浆-变质热事件:来自TTG 片麻岩和花岗质片麻岩中锆石U-Pb 定年的证据. 岩石学报,27(4):943 -960

刘建辉,刘福来,丁正江,刘平华,王舫,游君君. 2012. 胶北~2.5Ga 岩浆热事件的锆石Hf 同位素特征及其对地壳演化的指示意义. 岩石学报,28(9):2697 -2704

刘平华,刘福来,王舫,刘建辉. 2011. 山东半岛早前寒武纪高级变质基底中超镁铁质岩的成因. 岩石学报,27(4):922 -942

刘平华,刘福来,王舫,刘建辉,蔡佳. 2013. 胶北西留古元古代~2.1Ga 变辉长岩岩石学与年代学初步研究. 岩石学报,29(7):2371 -2390

刘跃,邓军,王中亮,张良,张潮,刘向东,郑小礼,王旭东. 2014.胶西北新城金矿床二长花岗岩岩石地球化学、锆石U-Pb 年龄及Lu-Hf 同位素组成. 岩石学报,30(9):2559 -2573

陆松年,相振群,李怀坤,王惠初,初航. 2012. 华北克拉通对罗迪尼亚超大陆事件的响应——GOSEN 连接假设. 地质学报,86(9):1396 -1406

沈其韩. 2008. 再论我国早前寒武纪地层研究的新进展. 地层学杂志,32(3):231 -238

万渝生,刘敦一,王世炎,赵逊,董春艳,周红英,殷小艳,杨长秀,高林志. 2009. 登封地区早前寒武纪地壳演化——地球化学和锆石SHRIMP U-Pb 年代学制约. 地质学报,83(7):982 -999

万渝生,刘敦一,董春艳,刘守偈,王世进,杨恩秀. 2011. 高级变质作用对锆石U-Pb 同位素体系的影响:胶东栖霞地区变质闪长岩锆石定年. 地学前缘,18(2):17 -25

万渝生,董春艳,颉颃强,王世进,宋明春,徐仲元,王世炎,周红英,马铭株,刘敦一. 2012. 华北克拉通早前寒武纪条带状铁建造形成时代——SHRIMP 锆石U-Pb 定年. 地质学报,86(9):1447 -1478

王清晨. 2013. 大别山造山带高压-超高压变质岩的折返过程. 岩石学报,29(5):1607 -1620

王世进,万渝生,张成基,杨恩秀,宋志勇,王立法,王金光. 2009.山东早前寒武纪变质地层形成年代——锆石SHRIMP U-Pb 测年的证据. 山东国土资源,25(10):18 -24

吴元保,郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb 年龄解释的制约. 科学通报,49(16):1589 -1604

杨经绥,李天福,梁凤华,吴才来,陈松永. 2007. 中国大陆科学钻探主孔(CCSD-MH)石榴石橄榄岩:一个经历了深俯冲作用的古生代超镁铁质侵入体. 岩石学报,23(12):3153 -3170

杨立强,王光杰,张中杰,邓军,赵爱华,王建平. 2000. 胶东金矿集中区岩石圈结构与深部成矿作用. 地球科学,25(4):421-427

杨立强,邓军,王中亮. 2014a. 胶东金矿控矿构造样式:地质-地球物理综合约束. 见:陈运泰,金振民,石耀霖,杨文采,朱日祥主编.中国大陆地球深部结构与动力学研究——庆贺滕吉文院士从事地球物理研究60 周年. 北京:科学出版社,1006 -1030杨立强,邓军,王中亮,张良,郭林楠,宋明春,郑小礼. 2014b. 胶东中生代金成矿系统. 岩石学报,30(9):2447 -2467

张岳桥,李金良,张田,袁嘉音. 2007. 胶东半岛牟平-即墨断裂带晚中生代运动学转换历史. 地质论评,53(3):289 -300

赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报,25(8):1772 -1792

猜你喜欢

环带苏鲁锆石
斑晶斜长石环带结构及成因研究进展
锆石的成因类型及其地质应用
不发糖的克苏鲁
一种BDII/GPS抗干扰环带天线设计
俄成功试射“锆石”高超音速巡航导弹
蕨类植物孢子囊的结构、功能和演化*
独特的暗黑体系 你可能并不了解的克苏鲁神话
天王星的光环系统(二)
西准噶尔乌尔禾早二叠世中基性岩墙群LA-ICP-MS锆石U-Pb测年及构造意义
地质学