大兴安岭中南段甘珠尔庙地区晚中生代两期花岗岩的时代、成因、物源及其构造背景*
2014-04-11杨奇荻郭磊王涛曾涛张磊童英史兴俊张建军
杨奇荻 郭磊 王涛 曾涛 张磊 童英 史兴俊 张建军
1.中国地质科学院地质研究所,北京 1000372.东华理工大学,抚州 3300133.中国地质大学,北京 1000831.
1 引言
大兴安岭位于中亚造山带东段或兴蒙造山带中西段,其经历了西伯利亚板块与华北板块碰撞和之后向古太平洋体制转换的过程(赵越等,1994; Wuetal.,2002,2011a)以及可能的蒙古-鄂霍茨克洋体制的叠加(李锦轶等,2004,2009),因此,是研究中国乃至东北亚中生代构造岩浆演化的重要地区之一。该地区及整个东北发育5期重要的花岗质岩浆活动,分别为475~505Ma、310~340Ma、240~270Ma、170~200Ma、115~145Ma,其中大兴安岭地区主要分布有晚古生代(310~340Ma)和早白垩世(115~145Ma)花岗岩(Wuetal.,2011a; 张兴洲等,2012)。在晚中生代,整个东北亚发生了巨型的地壳伸展(Davisetal.,2001; Wangetal.,2011)和大规模岩浆作用(葛文春等,1999; 林强等,2004; 邵济安等,2005; Wuetal.,2011a)。大兴安岭及邻区广布的晚中生代花岗岩类是这一大规模构造岩浆事件的重要表现。在大兴安岭中南段,特别是林西地区,晚侏罗世和早白垩世花岗岩已有报道和研究,认为两者具有相同的构造岩浆演化背景(邵济安等,1998; 祝洪臣等,2005; 刘伟等,2007)。事实上该区晚侏罗世花岗岩研究很弱,它们与早白垩世岩浆活动是否具有相似的性质,指示何种构造背景,还有待于进一步研究确定。相对而言,大兴安岭中南段中部甘珠尔庙地区目前未见有晚中生代花岗岩的报道,因此制约了整个大兴安岭中南段晚中生代的构造岩浆演化的认识。
本文报道了甘珠尔庙地区5个晚中生代花岗岩的锆石年龄和地球化学、锆石Hf同位素数据,分析了晚侏罗世与早白垩世花岗岩的岩浆成因及物源,同时结合区域相关资料,进一步讨论了区域上晚中生代花岗岩浆年代学格架、成因演化及构造背景。该研究为完整认识大兴安岭中南段地区晚中生代构造岩浆演化及其环境提供了新的依据。
2 区域地质背景
图1 甘珠尔庙地区地质简图(大地构造位置分区图(图1a)据张兴洲等,2006)图1b中花岗岩年龄资料来源: ①葛文春等,2005; ②江思宏等,2011a; ③江思宏等,2011b; ④Liu et al.,2005; ⑤Zhou et al.,2012; ⑥Wu et al.,2011a; ⑦马星华等,2009; ⑧Wu et al.,2011b;⑨曾庆栋和刘建明,2010; ⑩张晓静等,2010Fig.1 Geological sketch map of Ganzhuermiao region (Fig.1a,modified after Zhang et al.,2006)Sources of ages of granitoids in the Fig 1b: ①Ge et al.,2005; ②Jiang et al.,2011a; ③Jiang et al.,2011b; ④Liu et al.,2005; ⑤Zhou et al.,2012; ⑥Wu et al.,2011a; ⑦Ma et al.,2009; ⑧Wu et al.,2011b;⑨Zeng and Liu,2010; ⑩Zhang et al.,2010
大兴安岭中南段北邻兴安地块,南邻华北北缘构造带,东为松嫩地块,西接锡林浩特中间陆块(图1a,张兴洲等,2006)。该区主要由显生宙地层组成(邵济安等,2005),西部锡林浩特地区曾认为存在前寒武变质基底(李双林和欧阳自远,1998; 任纪舜等,1999),后来的研究认为代表该基底的锡林郭勒杂岩可能是晚古生代杂岩(陈斌等,2009; 薛怀民等,2009),但最新的年代学资料显示,该区的确存在元古代变质岩系(孙立新等,2013)。甘珠尔庙地区主要出露晚古生代浅-微变质的火山沉积岩系(王成文等,2009),以及晚中生代侏罗系和白垩系陆相中-酸性火山岩及陆相碎屑沉积岩(郭锋等,2001; Guoetal.,2010),主要为侏罗系新民组(浅色凝灰岩、炭质页岩及酸性凝灰岩)、满克头鄂博组(流纹岩、凝灰岩及凝灰质砂岩)、玛尼吐组(安山岩、流纹岩安山岩及凝灰岩、凝灰质砂岩)、白音高老组(流纹岩、凝灰岩、流纹安山岩及凝灰岩、凝灰质砂岩);其次为晚古生代寿山沟组(滨海相砂、板岩组合)、大石寨组(分布广泛,为浅海-滨海相的细碧岩、角斑岩及凝灰岩组合)、哲斯组地层(下部为黄绿色砂砾岩、灰色生物碎屑岩和硅质岩,上部为灰色块状炭质粉砂岩、板岩);另外,还有少量的白垩系平山组地层(中-基性熔岩及火山碎屑岩,酸性凝灰岩)。前人报道有甘珠尔庙晚古生代变质核杂岩(张履桥等,1998),本次野外调研初步显示其可能为穹隆构造。
大兴安岭中南段地区的岩浆作用十分发育,其中晚侏罗世火山岩分布面积占该区的60%(邵济安等,1999a,b),而甘珠尔庙地区的三叠纪至早白垩世花岗岩基本侵位于二叠系或侏罗系地层,其岩性主要为正长花岗岩、二长花岗岩-花岗岩斑岩。
位于贺根山-嫩江-黑河缝合带与索伦山-西拉木沦-长春-延吉缝合带之间东部的甘珠尔庙地区,经历二叠纪末至三叠纪初沿后者的古亚洲洋的最后闭合(Xiaoetal.,2003),侏罗纪晚期蒙古-鄂霍茨克造山带完成,早白垩世进入后碰撞阶段,后期开始受到古太平洋的影响(李锦轶等,2004)。
3 晚中生代花岗岩体基本特征与样品概况
3.1 岩体特征
本研究在甘珠尔庙地区鉴别出的晚中生代花岗岩体主要有晚侏罗世土木富洲岩体,早白垩世早阶段乌兰达坝岩体、小井子岩体、花加拉嘎岩体,早白垩世晚阶段巴里木哈德岩体(图1c)。
土木富洲岩体位于甘珠尔庙地区的西南部,由数十个小岩体及岩株组成,出露面积约100km2,侵位于二叠纪和侏罗系地层中。在岩体中发育有残留顶盖,岩体与围岩的边界平直或呈锯齿状,显示了明显的侵入关系。该岩体主体为中粒黑云母正长花岗岩。
乌兰达坝和小井子岩体位于甘珠尔庙地区的中部,呈岩基状产出,主体侵位于二叠系。同时代花加拉嘎岩体位于甘珠尔庙地区的南部,主要呈岩株状产出,侵位于二叠系和侏罗系地层。这三个岩体出露总面积超过180km2,主体岩性为中粒黑云母二长花岗岩。
巴里木哈德岩体位于甘珠尔庙地区的西部,呈北向透镜状岩基产出,面积约90km2,主体侵位于侏罗系火山岩,界限清楚,外接触带具有角岩化和硅化;内带边缘为钾质花岗斑岩,向岩体中心逐渐变化为中细粒正长花岗岩。岩体中残留顶盖和捕虏体较多,为中浅层岩体,剥蚀程度较弱。
3.2 样品概况
在野外观察及岩相学研究的基础上,选择典型的花岗质岩石,共采集了14件地球化学样品(图1c),其中5件锆石U-Pb定年样品分别采自以下5个岩体。
样品GZ10-65为黑云母正长花岗岩,采自土木富洲岩体。岩石呈灰白色,块状构造。主要矿物组合为石英(20%)+钾长石(60%)+斜长石(15%)+黑云母(5%)+角闪石(<1%),含少量锆石、磷灰石、磁铁矿等副矿物。
样品GZ10-57为黑云母二长花岗岩,采自花加拉嘎岩体。岩石呈灰白色,二长结构,块状构造。主要矿物组合为石英(20%)+碱长石(30%)+斜长石(40%)+黑云母(8%),含少量锆石、磷灰石、磁铁矿等副矿物。
样品GZ10-52为黑云母二长花岗岩,采自乌兰达坝岩体。岩石呈灰白色,以块状构造为主。主要矿物组合为石英(30%)+钾长石(30%)+斜长石(30%)+黑云母(8%)。钾长石主要为条纹长石,有少量的微斜长石,含少量锆石、磷灰石、磁铁矿等副矿物。岩石具有典型的花岗结构。
样品GZ10-49为黑云母二长花岗岩,采自小井子岩体。岩石呈浅肉红色,具有显微文象结构,块状构造。主要矿物组合为石英(20%)+钾长石(40%)+斜长石(35%)+黑云母(<5%),钾长石主要为条纹长石,有少量的微斜长石,含少量锆石、磷灰石、磁铁矿等副矿物。
样品GZ10-28为花岗斑岩,采自巴里木哈德岩体。岩石呈肉红色,具块状构造,典型的似斑状结构,斑晶主要为石英和钾长石,共约占20%±,其中钾长石以微斜条纹长石为主,少数为条纹长石和正长石,基质由钾长石、石英和斜长石微晶组成。
4 分析方法及结果
4.1 分析方法
样品在河北省廊坊区域地质调查研究所采用常规方法进行粉碎、分选。锆石U-Pb同位素分析在天津地质矿产研究所同位素实验室完成,数据处理采用中国地质大学Liuetal.(2008)编写的ICPMSDataCal程序和Ludwing(1999)的Isoplot程序进行作图,采用204Pb对普通铅进行校正。利用NIST612作为外标计算锆石样品的Pb、U、Th含量。
样品主量元素、微量元素分析测试是在加拿大温哥华Acme分析实验室进行的,除了Fe2O3之外,分别由电感耦合等离子光谱分析(ICP-AES)和电感耦合等离子质谱仪(ICP-MS)完成。
锆石原位Lu-Hf同位素分析在中国地质科学院矿产资源研究所的等离子体质谱仪(LA-MC-ICP-MS)上进行测试具体流程及仪器运行条件等见文献(侯可军等,2007)。
4.2 分析结果
4.2.1锆石U-Pb定年
锆石U-Pb测定结果数据见表1和图2。CL图像显示,锆石晶型较好,呈单锥或双锥状,发育典型的岩浆韵律环带和明暗相间的条带结构。这些样品的测试点基本位于锆石的边缘部位。
样品GZ10-65获得27个测点。除6号、23号、26号点距锆石核部较近外(可能为核幔混合年龄外),其余24个点基本位于锆石幔部和边部的结晶环带部位,位于谐和线上及其附近,206Pb/238U加权平均年龄为154±1Ma,MSWD=0.29,代表锆石结晶年龄,故可代表土木富洲花岗岩体形成年龄。
样品GZ10-57获得28个测点。26号数据可能因Pb丢失,获得206Pb/238U年龄明显偏年轻,其余27个点基本位于谐和线上及其附近,206Pb/238U加权平均年龄为139±1Ma,MSWD=0.75,可代表花加拉嘎花岗岩形成年龄。
样品GZ10-52获得34个测点,可能由于Pb丢失,造成1号、2号、7号、8号、9号具有明显的不谐和年龄,其余29个点基本位于谐和线上及其附近,206Pb/238U加权平均年龄为137±1Ma,MSWD=0.65,应代表乌兰达坝岩体形成年龄。
样品GZ10-49获得34个测点,除6号、17号、23号点数据具有明显的不谐和年龄外(信号极其不稳),其余31个点基本位于谐和线上及其附近,206Pb/238U加权平均年龄为138±1Ma,MSWD=0.55,代表小井子岩体形成年龄。
图2 甘珠尔庙地区晚中生代花岗岩锆石U-Pb年龄协和图Fig.2 Zircon U-Pb dating concordia diagrams of the Late Mesozoic granites in the Ganzhuermiao region
样品GZ10-28获得34个测点,可能由于Pb丢失,5号、11号、21号、28号、34号点具有明显的不谐和年龄,其余29个点基本位于谐和线上及其附近,206Pb/238U加权平均年龄为125±1Ma,MSWD=0.47,可以代表巴里木哈德岩体形成年龄。
4.2.2岩石地球化学特征
各花岗岩体样品的主微量元素分析结果见表2。
晚侏罗世土木富洲岩体2件样品的SiO2含量范围为75.40%~75.57%,全碱(Na2O+K2O)为9.05%~9.18%,CaO为0.31%~0.33%,MgO为0.09%~0.10%,A/CNK范围为0.99~1.00,为弱过铝质,属于高钾钙碱性系列(图3)。其稀土元素∑REE=157.8×10-6~173.6×10-6,(La/Yb)N为3.42~4.08,在稀土元素配分模式图中(图4),表现为右倾海鸥型,具有明显负Eu异常,δEu值为0.10~0.12。
表1甘珠尔庙地区晚中生代花岗岩锆石LA-ICP-MS U-Pb分析结果
Table1LA-ICP-MS zircon U-Pb data of the Late Mesozoic granites in the Ganzhuermiao region
测点号含量(×106)232Th238UTh/U同位素比值年龄(Ma)207Pb/206Pb1σ(×104)206Pb/238U1σ(×104)207Pb/235U1σ(×104)207Pb/206Pb1σ206Pb/238U1σ207Pb/235U1σGZ10⁃28⁃125740 340 0484590 019620 1305153118290125112515GZ10⁃28⁃2381170 320 0484400 019420 1295106119195124112410GZ10⁃28⁃3431430 300 0673380 020420 1897109847117130117610GZ10⁃28⁃4791770 440 0485240 019620 13146712411912511256GZ10⁃28⁃540780 520 2146710 032130 9492355294154204267825GZ10⁃28⁃6551440 380 0514250 020120 14267125711312911357GZ10⁃28⁃7571370 410 0488280 019720 13247713613312611267GZ10⁃28⁃845950 480 0486510 019720 1322136127249126112613GZ10⁃28⁃9481030 460 0483360 019420 12959711517612411249GZ10⁃28⁃10301000 300 0524470 020120 1451129301203128113812GZ10⁃28⁃1138720 520 08311360 021440 24554001271320137222336GZ10⁃28⁃12641570 410 0472400 019820 129211161204127112311GZ10⁃28⁃132385050 470 0485100 019410 1300261264712411243GZ10⁃28⁃141101940 570 0485260 019520 13027112412612411247GZ10⁃28⁃15531380 390 0487290 019720 13208013113912611268GZ10⁃28⁃1643860 500 0485570 019520 1303151123277124112414GZ10⁃28⁃1754970 560 0487380 019720 1322105131185126112610GZ10⁃28⁃18941720 550 0484270 019520 12997411813112411247GZ10⁃28⁃19671910 350 0484230 019720 13176311911112611266GZ10⁃28⁃20521030 510 0486430 019520 1309115130207125112511GZ10⁃28⁃2124750 320 0786790 019620 21212091162199125219519GZ10⁃28⁃22801500 530 0484170 019620 1307481178412511255GZ10⁃28⁃2337950 390 0493340 019220 13039116316212211249GZ10⁃28⁃2481210 060 0485390 019620 1309105126189125112510GZ10⁃28⁃25831600 520 0484230 019420 12946211911212411246GZ10⁃28⁃261161970 590 0573230 019520 1543625038812511466GZ10⁃28⁃27461200 390 0486240 019520 13096712811712511256GZ10⁃28⁃28541280 420 0719340 019520 1935959849712511809GZ10⁃28⁃29471160 410 0487370 019720 1324102134179126112610GZ10⁃28⁃301402410 580 0485180 019520 1304491258612411245
续表1
Continued Table 1
测点号含量(×106)232Th238UTh/U同位素比值年龄(Ma)207Pb/206Pb1σ(×104)206Pb/238U1σ(×104)207Pb/235U1σ(×104)207Pb/206Pb1σ206Pb/238U1σ207Pb/235U1σGZ10⁃28⁃3133920 350 0643450 019520 1732122751147125116211GZ10⁃28⁃32461480 310 0485270 019820 13217412413012611267GZ10⁃28⁃33681490 460 0484190 019520 1299531199312411245GZ10⁃28⁃341392100 660 0787270 019520 21177511656912511957GZ10⁃49⁃119560 340 0486790 021530 1445211130381137213720GZ10⁃49⁃2972920 330 0439170 021720 131052-1189713811255GZ10⁃49⁃31673820 440 0487110 021620 1452341355413811383GZ10⁃49⁃41655740 290 048890 021520 1446291394613711373GZ10⁃49⁃51435330 270 0488100 021620 1451291374613811383GZ10⁃49⁃6651800 360 1834320 021520 544411126842913714419GZ10⁃49⁃71725670 300 0492100 021520 1458301594713711383GZ10⁃49⁃81474940 300 0488100 021520 1445301374713711373GZ10⁃49⁃91844410 420 0487100 021520 1444321325113711373GZ10⁃49⁃101565180 300 048890 021820 1464271364113911393GZ10⁃49⁃111485490 270 048690 021820 1464271314313911393GZ10⁃49⁃12703540 200 0488130 021620 1451401386513811384GZ10⁃49⁃131936530 300 048770 021720 1456231313613811382GZ10⁃49⁃1420660 300 0528900 021230 1540247318390135214523GZ10⁃49⁃15962100 460 0487230 021520 14476813611013711376GZ10⁃49⁃161172290 510 0489280 021520 14498214513213711378GZ10⁃49⁃17651310 500 3532330 036341 76732583721142303103415GZ10⁃49⁃181435410 270 0486100 021720 1450301274613811383GZ10⁃49⁃19361750 200 0488230 021920 14767014011114011407GZ10⁃49⁃20903190 280 0489120 021920 1477391436014011404GZ10⁃49⁃212176850 320 047270 021620 140223593713711332GZ10⁃49⁃221806190 290 048980 021920 1478251433814011402GZ10⁃49⁃23541200 450 0952420 022820 2992143153284145226613GZ10⁃49⁃24193010 060 0490130 021620 1461411466513811384GZ10⁃49⁃2528700 400 0489480 021920 1479141143232140114013GZ10⁃49⁃2631800 390 0486350 021620 1451108131170138113810
续表1
Continued Table 1
测点号含量(×106)232Th238UTh/U同位素比值年龄(Ma)207Pb/206Pb1σ(×104)206Pb/238U1σ(×104)207Pb/235U1σ(×104)207Pb/206Pb1σ206Pb/238U1σ207Pb/235U1σGZ10⁃49⁃271695860 290 048880 021620 1450251374013811372GZ10⁃49⁃281685840 290 048980 021520 1447231413713711372GZ10⁃49⁃292277320 310 049170 021620 1461231513613811382GZ10⁃49⁃301795990 300 048680 021520 1441261274113711372GZ10⁃49⁃312996070 490 048880 021520 1449251373913711372GZ10⁃49⁃321314970 260 0491100 021920 1483311514814011403GZ10⁃49⁃331181930 610 0533330 022420 1649103344140143115510GZ10⁃49⁃3433820 400 0487380 021720 1456114134185138113811GZ10⁃52⁃136910 390 0909570 021720 27161741444119138124416GZ10⁃52⁃23257640 430 072180 022720 2261279902314512072GZ10⁃52⁃3892260 400 0488240 021820 14647513711713911397GZ10⁃52⁃4511660 310 0488190 021920 1474591379214011406GZ10⁃52⁃5461450 320 0488320 021520 14459513715313711379GZ10⁃52⁃634810430 330 048670 021720 1451211263313811382GZ10⁃52⁃7451420 320 0934230 023020 29677814964714712647GZ10⁃52⁃831812030 260 071190 022620 2220299622514412043GZ10⁃52⁃91653350 490 2916230 030531 227613534261219428139GZ10⁃52⁃10601710 350 0487240 021420 14367113511413611367GZ10⁃52⁃113559830 360 048450 021420 1428161202413611362GZ10⁃52⁃12501330 380 0485500 021320 1423147124243136113514GZ10⁃52⁃13441520 290 0490270 021620 14598014612813811388GZ10⁃52⁃14411500 270 0488370 021320 1433110137179136113610GZ10⁃52⁃1540990 400 0489410 021920 1477125144198140114012GZ10⁃52⁃161263590 350 0488160 021420 1438481367813611365GZ10⁃52⁃172438800 280 048960 021320 1435201412913611362GZ10⁃52⁃184698370 560 048960 021420 1445191442913711372GZ10⁃52⁃19611770 340 0486240 021520 14437212811713711377GZ10⁃52⁃20962940 330 0488210 021420 14396313810013611366GZ10⁃52⁃21792500 320 0466180 021520 138155289313711315GZ10⁃52⁃22822090 390 0508200 021420 1499602349213611426
续表1
Continued Table 1
测点号含量(×106)232Th238UTh/U同位素比值年龄(Ma)207Pb/206Pb1σ(×104)206Pb/238U1σ(×104)207Pb/235U1σ(×104)207Pb/206Pb1σ206Pb/238U1σ207Pb/235U1σGZ10⁃52⁃231043000 350 0489150 021520 1447441427013711374GZ10⁃52⁃24396190 060 049090 021620 1459281504413811383GZ10⁃52⁃25792230 350 0663160 021520 1966518175213711825GZ10⁃52⁃262824670 600 0490140 021420 1449421506513711374GZ10⁃52⁃272013710 540 0489140 021520 1447411426613711374GZ10⁃52⁃281332590 510 1362200 023620 44357021802615013736GZ10⁃52⁃291173240 360 0487170 021420 1435511368313611365GZ10⁃52⁃301362610 520 0489150 021320 1436451427113611364GZ10⁃52⁃31621960 320 0488230 021620 14557013911013811387GZ10⁃52⁃32481290 370 0488480 021420 1442137140230137113713GZ10⁃52⁃33962050 470 0555310 021820 16689243412313911579GZ10⁃52⁃341773660 480 0488150 021420 1439451397113611364GZ10⁃57⁃144820 540 0457760 022020 1388232-20404141213222GZ10⁃57⁃259950 620 0486490 021720 1454146129239138113814GZ10⁃57⁃3601270 470 0490370 021620 1458108149176138113810GZ10⁃57⁃420460 430 05261060 022030 1595290310461140215027GZ10⁃57⁃51231940 640 0450270 021520 133281-5714913711278GZ10⁃57⁃6781400 560 0489340 021820 1470101141162139113910GZ10⁃57⁃7841340 630 0579320 022220 177510052712314211669GZ10⁃57⁃81752660 660 0482230 022020 14616911011214011387GZ10⁃57⁃974820 900 0489570 021620 1457164145275138113816GZ10⁃57⁃10821130 720 0514480 022020 1557145259215140114714GZ10⁃57⁃111382020 680 0427310 021820 128193-18718013911229GZ10⁃57⁃1266790 840 0340740 022020 1032211-794620141110020GZ10⁃57⁃131121870 600 0486240 021720 14557213011513811387GZ10⁃57⁃14961440 670 0512300 021520 15188724913413711438GZ10⁃57⁃1543630 680 0622890 022330 1913258682306142217824GZ10⁃57⁃16911240 740 0490340 021820 1470102147164139113910GZ10⁃57⁃1744590 740 0486660 021730 1453187129320138213818GZ10⁃57⁃1827460 590 04191330 021630 1250319-231801138212031GZ10⁃57⁃1957740 760 0490650 021830 1470187147313139213918GZ10⁃57⁃2042740 560 0489450 021820 1472135144217139213913GZ10⁃57⁃21952990 320 0489150 021620 1461481457413811385
续表1
Continued Table 1
测点号含量(×106)232Th238UTh/U同位素比值年龄(Ma)207Pb/206Pb1σ(×104)206Pb/238U1σ(×104)207Pb/235U1σ(×104)207Pb/206Pb1σ206Pb/238U1σ207Pb/235U1σGZ10⁃57⁃221642460 670 0490220 021720 14696914910613911397GZ10⁃57⁃23911820 500 0496240 022120 15117317811114111437GZ10⁃57⁃245770 060 0518570 021520 1537161278253137114515GZ10⁃57⁃25511090 470 0488400 021720 1460118138192138113811GZ10⁃57⁃26601340 450 0714710 011320 111311096820373110711GZ10⁃57⁃2732430 750 04891770 021840 1471402145848139213938GZ10⁃57⁃2820500 410 04881270 021940 1472330140609139313931GZ10⁃65⁃11223370 360 0491130 024220 1640451526315411544GZ10⁃65⁃289816960 530 049150 024220 1642181552215411542GZ10⁃65⁃3631840 340 0472210 024220 1576726010615411497GZ10⁃65⁃4812540 320 0490130 024120 1633431506015411544GZ10⁃65⁃5541490 360 0492350 024120 1635116156167154115411GZ10⁃65⁃61703020 560 0549130 025520 1926464075216211794GZ10⁃65⁃763410500 600 049250 024220 1642181562415411542GZ10⁃65⁃849411380 430 049050 024220 1639171492215411542GZ10⁃65⁃9541520 350 0491310 024520 1658105155147156115610GZ10⁃65⁃1064013310 480 049340 024320 1654151632015511551GZ10⁃65⁃111112080 540 0492210 024020 16277115510115311537GZ10⁃65⁃12902960 300 0493150 024120 1638511637115311545GZ10⁃65⁃132616710 390 049070 024220 1638261493615411542GZ10⁃65⁃14732340 310 0490210 024120 1626691469815311536GZ10⁃65⁃1548010150 470 049160 024320 1650221553115511552GZ10⁃65⁃163639240 390 049050 024220 1632191462615411542GZ10⁃65⁃1719600 320 0490550 024030 1623174147263153215316GZ10⁃65⁃18811690 480 0490280 024220 16379315013315411549GZ10⁃65⁃1986111180 770 049060 024120 1633211492915411542GZ10⁃65⁃2067960 690 0496440 024120 1647146175207154215514GZ10⁃65⁃21611940 320 0669190 024220 2230658355915412046GZ10⁃65⁃2248010890 440 049150 024220 1637191542615411542GZ10⁃65⁃235047890 640 063670 025020 2192257272415912012GZ10⁃65⁃24396250 060 051480 024620 1741272593415611632GZ10⁃65⁃2590619050 480 049380 024320 1652321643915511553GZ10⁃65⁃261041990 520 0716300 025520 251610797385162122810GZ10⁃65⁃271293420 380 0491140 024320 1646481536615511554
表2甘珠尔庙地区晚中生代花岗岩主量元素和(wt%)和微量元素(×10-6)
Table 2Major (wt%) and trace (×10-6) element composition of the Late Mesozoic granites in Ganzhuermiao region
样品号GZ10⁃27GZ10⁃28GZ10⁃52GZ10⁃53GZ10⁃48GZ10⁃49GZ10⁃50GZ10⁃51GZ10⁃24GZ10⁃25GZ10⁃57GZ10⁃58GZ10⁃64GZ10⁃65经纬度44°49′01″N,120°32′39″E44°49′40″N,120°25′09″E44°34′23″N,119°40′20″E44°34′28″N,119°26′35″E44°33′43″N,119°48′35″E44°31′03″N,119°46′30″E44°30′08″N,119°40′20″E44°30′08″N,119°40′20″E44°14′28″N,119°41′25″E44°08′23″N,119°52′15″E44°09′23″N,119°31′36″E44°09′09″N,119°31′41″E44°18′19″N,119°18′03″E44°18′19″N,119°18′03″E年代(Ma)125137138139154岩体巴里木哈德乌兰达坝小井子花加拉嘎土木富洲岩性花岗斑岩黑云母二长花岗岩黑云母二长花岗岩黑云母二长花岗岩正长花岗岩SiO274 5875 8571 8075 6074 6474 5873 7574 2269 9671 3272 3475 5975 4075 57Al2O312 9812 5114 4012 6613 3112 7413 7913 6314 7114 5914 4312 7512 8012 75Fe2OT31 351 252 021 251 412 241 411 392 412 041 621 111 381 30FeOT1 211 121 821 121 272 021 271 252 171 841 461 001 241 17MgO0 090 080 090 070 070 050 030 030 790 430 230 180 100 09CaO0 350 230 170 170 310 160 190 211 860 660 650 240 330 31Na2O3 533 954 473 734 283 774 424 383 724 374 753 004 274 24K2O5 434 675 455 284 584 915 215 105 144 944 945 374 914 81TiO20 110 080 130 100 130 150 100 100 370 330 220 150 100 10P2O50 020 020 030 030 030 020 020 010 090 080 050 040 040 03MnO0 020 050 020 010 010 030 030 030 040 050 050 020 020 02LOI1 501 301 401 101 201 301 000 800 801 000 601 500 600 70Total99 9799 9899 9699 9799 9599 9499 9599 9399 8899 8299 9099 9199 9799 97K2O+Na2O8 968 629 929 018 868 689 639 488 869 319 698 379 189 05(K2O+Na2O)/CaO25 6037 4858 3553 0028 5854 2550 6845 144 7614 1114 9134 8827 8229 19A/CNK1 051 041 061 041 061 081 041 040 981 061 001 140 991 00A/NK1 111 081 091 071 111 101 071 071 261 161 101 181 041 0510000Ga/Al2 232 402 703 002 752 892 292 772 172 011 951 702 942 84FeOT/(FeOT+MgO)0 930 930 950 940 950 980 980 980 730 810 860 850 930 93DI95 8696 6395 7997 0796 0095 4096 8196 7286 6692 7394 2995 9496 5996 63La45 2029 7032 6018 5039 8033 8024 7034 4023 0042 9030 4014 3028 3025 50Ce91 4061 4053 2053 3082 0086 7076 1085 1050 5081 6066 6038 4073 7062 40Pr10 696 959 235 4310 448 666 398 795 559 977 093 257 767 13Nd41 7025 2034 3019 9040 2031 8024 2034 4021 0037 8024 9012 5029 9027 00Sm6 574 127 404 648 045 904 446 084 066 124 192 296 356 35Eu0 130 140 270 200 300 240 260 330 721 080 600 310 240 21Gd5 393 276 034 327 395 053 975 353 344 913 102 156 006 66Tb0 950 541 110 811 280 960 730 890 550 810 530 421 191 27Dy5 323 106 194 817 785 644 365 063 004 262 872 777 367 74
续表2
Continued Table 2
样品号GZ10⁃27GZ10⁃28GZ10⁃52GZ10⁃53GZ10⁃48GZ10⁃49GZ10⁃50GZ10⁃51GZ10⁃24GZ10⁃25GZ10⁃57GZ10⁃58GZ10⁃64GZ10⁃65经纬度44°49′01″N,120°32′39″E44°49′40″N,120°25′09″E44°34′23″N,119°40′20″E44°34′28″N,119°26′35″E44°33′43″N,119°48′35″E44°31′03″N,119°46′30″E44°30′08″N,119°40′20″E44°30′08″N,119°40′20″E44°14′28″N,119°41′25″E44°08′23″N,119°52′15″E44°09′23″N,119°31′36″E44°09′09″N,119°31′41″E44°18′19″N,119°18′03″E44°18′19″N,119°18′03″E年代(Ma)125137138139154岩体巴里木哈德乌兰达坝小井子花加拉嘎土木富洲岩性花岗斑岩黑云母二长花岗岩黑云母二长花岗岩黑云母二长花岗岩正长花岗岩Ho1 120 601 210 981 641 280 951 040 600 930 680 651 561 65Er3 391 873 453 025 033 712 892 921 822 722 012 044 754 96Tm0 520 350 560 460 730 560 430 450 290 410 310 340 720 75Yb3 682 263 623 404 903 962 972 902 012 682 202 364 985 35Lu0 530 310 530 480 670 560 440 470 290 420 350 390 750 78∑REE216 6139 8159 7120 3210 2188 8152 8188 2116 7196 6145 882 17173 6157 8LREE195 7127 5137 0102 0180 8167 1136 1169 1104 8179 5133 871 05146 3128 6HREE20 9012 3022 7018 2829 4221 7216 7419 0811 9017 1412 0511 1227 3129 16LREE/HREE9 3610 376 045 586 147 698 138 868 8110 4711 106 395 364 41(La/Yb)N8 819 436 463 905 836 125 978 518 2111 489 914 354 083 42δEu0 060 110 120 130 120 130 190 170 580 580 490 420 120 10Rb223 4117 2216 3206 5137 9149 7139 1152 6253 9120 7131 9144 0182 5174 2Sr76 042 453 339 557 041 025 127 9240 9262 196 7121 849 343 8Y32 018 435 326 446 131 526 130 119 227 118 119 244 445 2Ba661842462252262592622925801017703735164155Cs2 62 04 24 23 26 23 03 815 72 54 04 82 11 8Th28 913 920 519 719 615 014 113 834 115 012 616 718 114 1U3 02 43 12 42 52 41 92 04 42 92 86 31 51 5Nb14 111 115 710 910 610 110 711 77 810 710 48 821 419 5Ta1 20 91 61 01 11 00 70 91 00 80 70 71 51 5Ga15 315 920 620 119 419 516 720 016 915 514 911 519 919 2Zr157 0129 1147 5140 4215 5299 7204 7223 0178 4228 1205 4128 2190 7139 3Hf6 04 95 35 57 69 96 57 45 67 06 33 97 56 1Sn311512443241 02234Cu0 80 52 30 73 91 50 60 65 73 81 30 90 30 7Pb22 326 432 98 216 413 513 312 511 117 713 615 48 49 8Zn3362482545704748313426313134Ni1 60 32 41 10 71 10 40 24 31 51 20 70 30 8Sr/Y2 382 301 511 501 241 300 960 9312 559 675 346 341 110 97Nb/Ta11 7512 339 8110 909 6410 1015 2913 007 8013 3814 8612 5714 2713 00Zr+Nb+Ce+Y294 5220 0251 7231 0354 2428 0317 6349 9255 9347 5300 5194 6330 2266 4
图4 甘珠尔庙地区晚中生代花岗岩微量元素蛛网图和稀土元素配分模式图(标准化值据Sun and McDonough,1989)Fig.4 Trace element and REE diagrams of the Late Mesozoic granites in Ganzhuermiao region (normalization values are after Sun and McDonough,1989)
早白垩世早阶段3个岩体(乌兰达坝、小井子、花加拉嘎)的10件样品的SiO2含量范围69.96%~75.60%,全碱(Na2O+K2O)范围为8.7%~9.9%,CaO为0.16%~1.9%,MgO为0.03%~0.79%,A/CNK为0.98~1.14,为弱过铝质,属于高钾钙碱性系列(图3)。上述10件样品的稀土元素∑REE=82.2×10-6~210.2×10-6,(La/Yb)N为3.9~11.48,在稀土元素球粒陨石标准化图(图4)中,成右倾海鸥型;其δEu值为0.12~0.58。
早白垩世晚阶段巴里木哈德岩体的2件样品的SiO2含量范围为74.58%~75.85%,全碱(Na2O+K2O)为8.62%~8.96%,CaO为0.23%~0.35%,MgO为0.08%~0.09%,A/CNK范围为1.04~1.05,为弱过铝质,也属于高钾钙碱性系列(图3)。其稀土元素∑REE=139.8×10-6~216.6×10-6,(La/Yb)N为8.81~9.43,在稀土元素球粒陨石标准化图(图4)中,成右倾海鸥型,δEu值为0.06~0.11。
总之,5个岩体的稀土元素球粒陨石标准化图皆成右倾海鸥型,但Eu负异常程度不同,晚侏罗世花岗岩比早白垩世花岗岩轻重稀土分馏弱。在微量元素的原始地幔标准化图解上,总体表现为不同程度的富集大离子亲石元素(Rb、Th、K等)和相应的亏损高场强元素(Nb、Ta、P等)。
4.2.3Hf同位素特征
选取具有谐和年龄的典型锆石进行Hf同位素测试,每颗锆石εHf(t)值以自身锆石年龄计算,结果见表3,各岩体锆石Hf同位素特征分述如下:
晚侏罗世土木富洲岩体样品GZ10-65共分析15个点,εHf(t)值为+9.9~+15.9,加权平均值为+12.1,峰值为+10~+14之间,两阶段Hf模式年龄为185~571Ma(n=15)。
早白垩世早阶段的3个岩体(花加拉嘎、小井子、乌兰达坝)样品GZ10-57、GZ10-49和GZ10-52分别分析了13个、12个和13个点。其中GZ10-57的εHf(t)值为+2.9~+7.9,加权平均值为+5.32,峰值为+5~+6之间,两阶段Hf模式年龄为688~1005Ma(n=13)。GZ10-49的εHf(t)值为+5.8~+13.9,加权平均值为+7.8,峰值为+6~+7之间,两阶段Hf模式年龄为302~821Ma。GZ10-52的εHf(t)值为+5.6~+13.8,加权平均值为+9.2,峰值为+8左右, 两阶段Hf模式年龄为310~836Ma。
表3甘珠尔庙地区晚中生代花岗岩锆石Hf同位素分析结果
Table 3Zircon Hf isotopic compositions of the Late Mesozoic granites in Ganzhuermiao region
测点号t(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf2σ(×106)εHf(t)2σtDM1(Ma)tDM2(Ma)fLu/HfGZ10⁃28⁃011250 0668650 0012490 282849285 41 0576841-0 96GZ10⁃28⁃021260 0789260 0014580 282833274 80 9603878-0 96GZ10⁃28⁃031240 0767160 0013990 282863255 80 9558810-0 96GZ10⁃28⁃041240 0415900 0008110 282836234 90 8588869-0 98GZ10⁃28⁃051270 0727480 0013900 282812244 10 9630923-0 96GZ10⁃28⁃061260 1209240 0028220 282796343 41 2680968-0 91GZ10⁃28⁃071240 1183020 0024310 282894296 81 0528745-0 93GZ10⁃28⁃081260 1074600 0022640 282930248 10 9473663-0 93GZ10⁃28⁃091250 1421800 0029020 282877286 21 0561786-0 91GZ10⁃28⁃101250 0896340 0018620 282837244 90 9602870-0 94GZ10⁃28⁃111250 1111860 0024620 282914267 60 9498699-0 93GZ10⁃28⁃121250 0618630 0012420 282844255 20 9582851-0 96GZ10⁃28⁃131240 1143440 0022190 282803283 61 0658950-0 93GZ10⁃28⁃141250 0634250 0012560 282898287 11 0506730-0 96GZ10⁃49⁃011370 0899880 0015260 282869266 30 9551790-0 95GZ10⁃49⁃021370 1295410 0022920 282863196 00 7572808-0 93GZ10⁃49⁃031380 1062150 0018520 282914207 90 7491689-0 94GZ10⁃49⁃041370 1705680 0035320 282878336 41 2570782-0 89GZ10⁃49⁃051370 1151250 0021550 282939218 70 7458635-0 94GZ10⁃49⁃061400 1098080 0020940 282875246 50 9551777-0 94GZ10⁃49⁃071380 0879590 0016200 282855215 80 8572821-0 95GZ10⁃49⁃081380 1414780 0026420 282953269 20 9444606-0 92GZ10⁃49⁃091370 1238970 0027580 282873226 30 8563787-0 92GZ10⁃49⁃101380 1264810 0024710 282912267 70 9503698-0 93GZ10⁃49⁃111370 2720800 0047250 2830922813 91 0251302-0 86GZ10⁃49⁃121400 0921480 0016340 282950209 20 7436606-0 95GZ10⁃52⁃011380 1747200 0034170 2830853113 81 1253310-0 90GZ10⁃52⁃021380 1561380 0027150 282941248 80 8462632-0 92GZ10⁃52⁃031360 0818050 0014640 282950309 21 1433606-0 96GZ10⁃52⁃041360 1267080 0022480 282930358 41 2472655-0 93GZ10⁃52⁃051360 1225570 0022400 282876226 50 8552779-0 93GZ10⁃52⁃061370 2557870 0044750 2830352711 91 0338429-0 87GZ10⁃52⁃071370 1282680 0023040 282937258 60 9463640-0 93GZ10⁃52⁃081360 0913420 0016980 282910207 70 7494698-0 95GZ10⁃52⁃091370 0966370 0017950 282894227 20 8519735-0 95GZ10⁃52⁃101370 1535840 0031790 2830162411 40 8355465-0 90GZ10⁃52⁃111370 0862940 0016470 282849255 60 9582836-0 95GZ10⁃52⁃121360 1380070 0026220 282907267 50 9511710-0 92GZ10⁃52⁃131360 1784880 0033010 2830763013 41 1265330-0 90GZ10⁃57⁃011380 1225200 0023990 282811244 20 9650926-0 93GZ10⁃57⁃021380 0409120 0007720 282851275 70 9566826-0 98GZ10⁃57⁃031400 0768080 0017910 282840255 30 9597856-0 95GZ10⁃57⁃041380 1136710 0021250 282833275 01 0612873-0 94GZ10⁃57⁃051400 1012450 0022140 282837255 20 9608864-0 93GZ10⁃57⁃061380 1464700 0033940 282778322 91 17181005-0 90GZ10⁃57⁃071370 1002970 0020150 282834235 00 8610872-0 94GZ10⁃57⁃081380 0742660 0014700 282865256 20 9557799-0 96
续表3
Continued Table 3
测点号t(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf2σ(×106)εHf(t)2σtDM1(Ma)tDM2(Ma)fLu/HfGZ10⁃57⁃091390 0760730 0014240 282880236 70 8534763-0 96GZ10⁃57⁃101380 1006210 0019250 282851215 60 7584833-0 94GZ10⁃57⁃111370 0682940 0012320 282790243 50 9660968-0 96GZ10⁃57⁃121370 1028770 0020840 282848335 51 2590841-0 94GZ10⁃57⁃131390 1205810 0021960 282915297 91 0493688-0 93GZ10⁃65⁃011540 0955650 0017610 2830022511 30 9362480-0 95GZ10⁃65⁃021540 0560550 0011140 2830022611 40 9356476-0 97GZ10⁃65⁃031540 3386460 0053290 2831153115 01 1219245-0 84GZ10⁃65⁃041540 0687240 0013150 2829882310 90 8377508-0 96GZ10⁃65⁃051560 1333470 0023790 282963249 90 9425571-0 93GZ10⁃65⁃061550 2741090 0045370 2830652213 30 8291353-0 86GZ10⁃65⁃071530 0784760 0015280 2829731610 30 6401545-0 95GZ10⁃65⁃081530 1108820 0020690 2829862110 70 8388518-0 94GZ10⁃65⁃091540 1337030 0029820 2830432912 71 0312393-0 91GZ10⁃65⁃101530 2088760 0034180 2831362015 90 7174185-0 90GZ10⁃65⁃111540 2659720 0044540 2830462712 61 0322398-0 87GZ10⁃65⁃121540 1546780 0026520 2830802914 01 0255308-0 92GZ10⁃65⁃131540 1865580 0032760 2830652713 41 0281345-0 90GZ10⁃65⁃141540 1126690 0018450 2830041811 40 6360476-0 94GZ10⁃65⁃151550 0754250 0013860 2830362312 60 8309399-0 96
早白垩世晚阶段巴里木哈德岩体样品GZ10-28分析了14个点,其εHf(t)值范围为+3.4~+8.1,加权平均值为+5.61,峰值为+4~+5左右,两阶段Hf模式年龄为663~968Ma(n=14)。
5 讨论
5.1 晚中生代花岗岩浆活动时代和期次
甘珠尔庙地区5个岩体锆石U-Pb测年的分析点多位于锆石的边部和幔部结晶环带部位,数据点大都位于U-Pb谐和线附近,表明这些测年结果代表锆石的结晶年龄,进而可以代表各个岩体侵位的年龄。分析结果显示,甘珠尔庙地区晚中生代花岗岩形成于晚侏罗世晚期(154Ma)和早白垩世,后者又可以分为两个阶段(139~137Ma与125Ma)。
图5 大兴安岭中南段晚中生代花岗岩年龄统计图图中①、②、③分别代表本文154Ma、139~137Ma、125Ma花岗岩所处年龄段Fig.5 Age histogram of the Late Mesozoic granites in central and southern Da Hinggan Range ①,② and ③ represent 154Ma,139~137Ma and 125Ma of this paper,respectively
就整个大兴安岭中南段而言,本文及区域上前人发表的40个(葛文春等,2005; Liuetal.,2005; 江思宏等,2011a,b; Wuetal.,2011a,b; 马星华等,2009; 曾庆栋和刘建明,2010; 张晓静等,2010; Zhouetal.,2012,图1b)晚中生代花岗岩类锆石U-Pb年龄统计显示(图5),其岩浆活动主要发育于早白垩世(142~124Ma),只发育少量的侏罗纪花岗岩(182~146Ma)。
图6 甘珠尔庙地区晚中生代花岗岩岩石成因图解(据Whalen et al.,1987)Fig.6 10000Ga/Al vs.Zr,Y,Ce and Nb diagrams of the Late Mesozoic granites in Ganzhuermiao region (after Whalen et al.,1987)
前人研究认为东北早中侏罗纪花岗岩主要分布在额尔古纳地块、小兴安岭-张广才岭和吉林东部(Wuetal.,2011a),晚侏罗世岩浆活动主要体现在大兴安岭地区发育的NNE向的火山岩(张兴洲等,2012),而本文获得的154Ma花岗岩在大兴安岭地区不多见。另外值得注意的是,甘珠尔庙地区125Ma与139~137Ma花岗岩,两者发育时代间隔较大。但前人研究认为大兴安岭北段和中南段花岗岩形成时代是以早白垩世为主体(佘宏全等,2012; Wuetal.,2011a),并未进一步细分期次。Zhangetal.(2010)曾将大兴安岭中南段的火山岩分为173~150Ma和141~122Ma两期,而同一地区的火山岩和花岗岩在发育时代上具有一定的可比性。因此根据大兴安岭中南段花岗岩年龄统计(图5),并结合整个大兴安岭地区花岗岩发育情况,125Ma与139~137Ma花岗岩似乎仍然是同一期岩浆事件的产物。另外,值得注意的是,该期花岗岩在大兴安岭以西乃至中蒙边界亚干地区(Wangetal.,2004)也有发育,显示它们可能具有相同的地质背景。
综上所述,甘珠尔庙地区晚侏罗世与早白垩世花岗岩应该属于两期岩浆事件的产物,不仅与大兴安岭中南段的晚中生代岩浆活动期次完全可以对比,也与同区火山岩发育期次很类似。
5.2 岩石成因类型和物源
5.2.1岩石成因类型
本次研究的5个花岗岩体,皆属于准铝质-弱过铝质高钾钙碱性系列,高硅富碱特征与大兴安岭中南段的晚中生代花岗岩地球化学性质相似(Liuetal.,2005; 周振华等,2010; 周漪等,2011)。大部分甘珠尔庙晚中生代花岗岩具较强Eu异常,具有相对低的Sr/Y值和Ba含量。文中花岗岩样品分异指数(DI)为92.73~97.07(除样品GZ10-24,其DI为86.66),表明原始岩浆的结晶分异强烈,由CIPW标准矿物计算结果可知,部分样品出现刚玉分子,但是含量很低,符合准铝质-弱过铝质的特征。另外,晚侏罗世花岗岩的(La/Yb)N为3.42~4.08,小于早白垩世花岗岩的4.35~11.48,说明两期花岗岩的轻重稀土分异不同。
在A型花岗岩判别图解中(图6),这些样品皆位于高分异花岗岩与A型花岗岩边界附近。图7显示大部分点落在高分异I型与A型花岗岩过渡区域内。图8中除三个样品外,其余点全部落入高分异的钙碱性花岗岩区域,进一表明甘珠尔庙晚中生代花岗岩属于高分异钙碱性I型花岗岩,与典型的巴尔哲(125±2Ma,Rb-Sr)、碾子山(125±1Ma,Rb-Sr)A型花岗岩不同(王一先和赵振华,1997; 李培忠和于津生,1993)。综上认为,甘珠尔庙地区晚中生代花岗岩为高分异钙碱性I-A过渡型花岗岩。晚侏罗世花岗岩轻重稀土分馏弱于早白垩世花岗岩。
图7 甘珠尔庙地区晚中生代花岗岩(Zr+Nb+Ce+Y)-(K2O+Na2O)/CaO图解(据Whalen et al.,1987)FG-分异的I,S型花岗岩;OGT-I,S,M型花岗岩分布区Fig.7 (Zr+Nb+Ce+Y) vs.(K2O+Na2O)/CaO diagram of the Late Mesozoic granites in Ganzhuermiao region (after Whalen et al.,1987)
图8 甘珠尔庙地区晚中生代花岗岩100(MgO+FeOT+TiO2)/SiO2-(Al2O3+CaO)/(FeOT+Na2O+K2O)图解(底图据Sylvester,1989)Fig.8 100(MgO+FeOT+TiO2)/SiO2 vs.(Al2O3+CaO)/(FeOT+Na2O+K2O) diagram of the Late Mesozoic granites in Ganzhuermiao region (after Sylvester,1989)
图9 甘珠尔庙地区晚中生代花岗岩εHf(t)-t图底侵下地壳与古生代俯冲增生杂岩演化线据Liu et al.(2005);乌兰浩特与林西地区中生代花岗岩εHf(t)数据(◇)分别引自周漪等(2011)和Zhou et al.(2012)Fig.9 εHf(t)-t diagram of the Late Mesozoic granites in Ganzhuermiao regionThe evolution lines of the underplated lower crust and Paleozoic subducted accretionary complexes modified after Liu et al.(2005),εHf(t) values (◇) of the Mesozoic granites from Wulanhaote and Linxi region are from Zhou et al.(2011) and Zhou et al.(2012)
5.2.2成岩物质来源
甘珠尔庙地区晚中生代花岗岩εHf(t)均大于零(+3.4~+15.9),说明年轻物质是其主要的来源。εHf(t)-t图解显示(图9),晚侏罗世花岗岩数据点基本落于大兴安岭中南段的新生底侵下地壳演化线(Liuetal.,2005)之上,说明其源区需要更加年轻的物质,很可能有新底侵物质的加入。早白垩世晚阶段花岗岩数据点落于大兴安岭南区新生底侵的下地壳演化线之下与古生代俯冲增生杂岩演化线(Liuetal.,2005)之上,暗示其物源可能主要来自新生底侵的下地壳和古生代俯冲增生杂岩混源。而早白垩世早阶段花岗岩的εHf(t)值变化范围最大,暗示物源极不均一。这些花岗岩的Nb/Ta值范围为7.8~15.29,平均为12.97,介于全球下地壳(Nb/Ta=8.3,Rudnick and Gao,2003)与亏损地幔之间(Nb/Ta=17.7,Sun and McDnough,1989),因此也显示其具有壳幔混源的特点,而三件早白垩世早阶段(139~137Ma)花岗岩样品地球化学特征不完全一致,说明该时期花岗岩源区较为复杂。
甘珠尔庙地区晚中生代花岗岩随着侵位年龄的逐渐变小,εHf(t)值明显降低。这个特点在乌兰浩特、林西及黄岗地区同样有较明显的表现(Liuetal.,2005; 周漪等,2011; Zhouetal.,2012),反映这些花岗岩岩浆源区中的年轻物质相对减少,同时发现εHf(t)值突变节点在139~137Ma之间(Zhouetal.,2011; Zhouetal.,2012),大兴安岭中南段花岗质岩浆发育的高峰也是在这个时期(毛景文等,2005)。在同一个地区,晚侏罗世到早白垩世花岗岩物源如此变化的原因和地球动力学背景还不是很清楚。一种解释是晚侏罗世花岗岩高εHf(t)值特点与地幔岩浆底侵有关,早白垩世(139~137Ma)相对低εHf(t)值花岗岩可能由于底侵物质的冷却造成较厚的地壳(下地壳物质和古生代俯冲增生杂岩)物源有关(刘伟等,2007; Liuetal.,2005)。
图10 甘珠尔庙地区晚中生代花岗岩构造环境判别图(底图据Pearce et al.,1984)大兴安岭南段三叠纪同造山花岗岩数据引自李锦轶等(2007)Fig.10 Discrimination diagrams for tectonic setting of the Late Mesozoic granites in Ganzhuermiao region (after Pearce et al.,1984)Data of synorognic Triassic granites in the southern Da Hinggan range are from Li et al.(2007)
综上所述,大兴安岭中南段晚侏罗世和早白垩世高分异钙碱性I-A过渡型花岗岩物源主要为底侵的幔源基性物质、新生下地壳和古生代的俯冲增生杂岩三者不同时代不同程度的混合产物,进一步表明该地区可能不存在古老的基底。
5.3 构造背景
在微量元素构造环境判别图上(图10),文中花岗岩样品点均落于板内和同碰撞区域,特别是与该地区早期的同造山花岗岩相比(李锦轶等,2007),它们出现向后碰撞和板内区域偏移的趋势。这可能揭示了该时期后造山板内的大地构造背景的信息,这与该期花岗岩的特性也是一致的。本文确定的晚侏罗世与早白垩世花岗岩具有高钾钙碱性特征,一般而言,高钾钙碱性系列花岗岩产生在陆弧环境或后碰撞环境(Pitcher,1983)。同时依据区域后造山伸展背景(Wangetal.,2011),该时期甘珠尔庙地区确为后碰撞伸展环境。
区域上,晚中生代地壳伸展的构造背景受何种体制制约还不是很清楚。一种可能的情况是,古亚洲洋最后消亡后的后造山环境(邵济安等,1997; Chenetal.,2000; 陈斌等,2001,2009; Xiaoetal.,2003; 王成文等,2008; 李锦轶等,2009; 佘宏全等,2012; 张兴洲等,2012),但是后碰撞阶段过程持续到晚中生代的可能性不大。另一种情况是,由于古太平洋板块俯冲方向的改变(Maruyama,1997; Sagongetal.,2005),中生代期间大兴安岭以及整个中国东部有可能经历了由挤压到伸展的转换过程(Davisetal.,2001; Meng,2003)。但是,学者们对古太平洋板块俯冲影响大兴安岭地区的时间还存疑问,李锦轶等(2004)认为白垩世中晚期至古近纪初,中国东北及邻区的大陆才开始在古太平洋俯冲作用的影响下,遭受了伸展及岩石圈减薄作用的改造。张旗(2013)认为太平洋板块的向西俯冲对中国东部中生代岩浆活动影响有限,因为太平洋真正向西俯冲时间只有125~110Ma和43~0Ma两个时间段。值得注意的是,本文的花岗岩侵位年龄主要为晚侏罗世及早白垩世。近年来,蒙古-鄂霍茨克造山带对东北地区地质演化历史作用的研究越来越受到重视(李锦轶等,2004; Tomurtogooetal.,2005; 佘宏全等,2012),该造山带碰撞造山作用结束于晚侏罗世晚期,之后的碰撞伸展可能是导致大兴安岭特别是以西地壳伸展的主因(Wangetal.,2011)。
6 结论
(1)通过锆石U-Pb定年,在大兴安岭中南段甘珠尔庙地区鉴别出5个晚中生代花岗岩体,其形成于晚侏罗世(154Ma)、早白垩世(139~137Ma与125Ma),与大兴安岭中南段岩浆作用时限大体一致,这为全面认识区域上晚中生代岩浆活动提供了新依据。
(2)甘珠尔庙地区晚中生代花岗岩属于高钾钙碱性系列,为高分异钙碱性I-A过渡型花岗岩。晚侏罗世花岗岩具有较高的εHf(t)值(+9.9~+15.9),源区以年轻的新底侵物质为主;早白垩世花岗岩εHf(t)值略低(+3.4~+13.9),物源主要来自新生下地壳和古生代俯冲增生杂岩混源。推测该区存在古老地壳的可能性不大。
(3)甘珠尔庙地区晚中生代花岗岩形成于后造山伸展背景。这种背景很可能形成于蒙古-鄂霍茨克洋闭合碰撞后伸展背景,其次在后期可能叠加古太平洋俯冲的影响。
致谢李舢博士和徐颖超硕士在成文过程中提供了帮助;两位匿名评审人提供了宝贵的意见;在此一并深表谢意。
Chen B,Jahn BM,Wilde SA and Xu B.2000.Two contrasting paleozoic magmatic belts in northern Inner Mongolia,China: Petrogenesis and tectonic implications.Tectonophysics,328(1-2): 157-182
Chen B,Zhao GC and Wilde SA.2001.Subduction- and collision-related granitoids from southern Sonidzuoqi,Inner Mongolia: Isotopic ages and tectonic implications.Geological Review,47(4): 361-367 (in Chinese with English abstract)
Chen B,Ma XH,Liu AK and Zari M.2009.Zircon U-Pb ages of the Xilinhot metamorphic complex and blueschist,and implications for tectonic evolution of the Solonker suture.Acta Petrologica Sinica,25(12): 3123-3129 (in Chinese with English abstract)
Davis GA,Zheng YD,Wang C,Darby BJ,Zhang CH and Gehrels GE.2001.Mesozoic tectonic evolution of the Yanshan fold and thrust belt,with emphasis on Hebei and Liaoning provinces,northern China.Geological Society of America Memoirs,194: 171-197
Ewart A.1982.The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks: With special reference to the andesitic-basaltic compositional range.In: Thorpe RS (ed.).Andesites: Orogenic Andesites and Related Rocks.New York: John Wiley and Sons,25-95
Ge WC,Lin Q,Sun DY,Wu FY,Won CW,Lee MW,Jin MS and Yun SY.1999.Geochemical characteristics of the Mesozoic basalts in Da Hinggan Ling: Evidence of the mantle-crust interaction.Acta Petrologica Sinica,15(3): 396-407 (in Chinese with English abstract)
Ge WC,Wu FY,Zhou CY and Zhang JH.2005.Zircon U-Pb ages and its significance of the Mesozoic granites in the Wulanhaote region,central Da Hinggan Mountain.Acta Petrologica Sinica,21(3): 749-762 (in Chinese with English abstract)
Guo F,Fan WM,Wang YJ and Lin G.2001.Petrogenesis of the Late Mesozoic bimodal volcanic rocks in the southern Da Hinggan Mts,China.Acta Petrologica Sinica,17(1): 161-168 (in Chinese with English abstract)
Guo F,Fan WM,Gao XF,Li CW,Miao LC,Zhao L and Li HX.2010.Sr-Nd-Pb isotope mapping of Mesozoic igneous rocks in NE China: Constraints on tectonic framework and Phanerozoic crustal growth.Lithos,120(3-4): 563-578
Hou KJ,Li YH,Zou TR,Qu XM,Shi YR and Xie GQ.2007.Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications.Acta Petrologica Sinica,23(10): 2595-2604 (in Chinese with English abstract)
Jiang SH,Nie FJ,Liu YF,Hou WR,Bai DM,Liu Y and Liang QL.2011a.Geochronology of intrusive rocks occurring in and around the Mengentaolegai silver-polymetallic deposit,Inner Mongolia.Journal of Jilin University (Earth Science Edition),41(6): 1755-1769 (in Chinese with English abstract)
Jiang SH,Nie FJ,Bai DM,Liu YF and Liu Y.2011b.Geochronology evidence for Indosinian mineralization in Baiyinnuoer Pb-Zn deposit of Inner Mongolia.Mineral Deposits,30(5): 787-798 (in Chinese with English abstract)
Li JY,Mo SG,He ZJ,Sun GH and Chen W.2004.The timing of crustal sinistral strike-slip movement in the northern Great Khing’an ranges and its constraint on reconstruction of the crustal tectonic evolution of NE China and adjacent areas since the Mesozoic.Earth Science Frontiers,11(3): 157-168 (in Chinese with English abstract)
Li JY,Gao LM,Sun GH,Li YP and Wang YB.2007.Shuangjingzi Middle Triassic syn-collisional crust-derived granite in the East Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean paleo-plates.Acta Petrologica Sinica,23(3): 565-582 (in Chinese with English abstract)
Li JY,Zhang J,Yang TN,Li YP,Sun GH,Zhu ZX and Wang LJ.2009.Crustal tectonic division and evolution of the southern part of the north Asian orogenic region and its adjacent areas.Journal of Jilin University (Earth Science Edition),39(4): 584-605 (in Chinese with English abstract)
Li PZ and Yu JS.1993.Nianzishan miarolitic alkaline granite stock,Heilongjiang: Its ages and geological implication.Geochimica,(4): 389-398 (in Chinese with English abstract)
Li SL and Ouyang ZY.1998.Tectonic framework and evolution of Xing’an Ling: Mongolian orogenic belt (XMOB) and its adjacent region.Marine Geology & Quaternary Geology,18(3): 45-54 (in Chinese with English abstract)
Lin Q,Ge WC,Wu FY,Sun DY and Cao L.2004.Geochemistry of Mesozoic granites in Da Hinggan Ling ranges.Acta Petrologica Sinica,20(3): 403-412 (in Chinese with English abstract)
Liu W,Siebel W,Li XJ and Pan XF.2005.Petrogenesis of the Linxi granitoids,northern Inner Mongolia of China: Constraints on basaltic underplating.Chemical Geology,219(1-4): 5-35
Liu W,Pan XF,Xie LW and Li H.2007.Sources of material for the Linxi granitoids,the southern segment of the Da Hinggan Mts.: When and how continental crust grew? Acta Petrologica Sinica,23(2): 441-460 (in Chinese with English abstract)
Liu YS,Hu ZC,Gao S,Günther D,Xu J,Gao CG and Chen HH.2008.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard.Chemical Geology,257(1-2): 34-43
Ludwing KR.1999.Using Isoplot/Ex Version 2: A Geochronological Toolkit for Microsoft Excel.Berkeley: Berkeley Geochronological Special Publications,1-47
Ma XH,Chen B,Lai Y and Lu YH.2009.Petrogenesis and mineralization chronology study on the Aolunhua porphyry Mo deposit,Inner Mongolia,and its geological implications.Acta Petrologica Sinica,25(11): 2939-2950 (in Chinese with English abstract)
Mao JW,Xie GQ,Zhang ZF,Li XF,Wang YT,Zhang CQ and Li YF.2005.Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings.Acta Petrologica Sinica,21(1): 169-188 (in Chinese with English abstract)
Maruyama S.1997.Pacific-type orogeny revisited: Miyashiro-type orogeny proposed.Island Arc,6(1): 91-120
Meng Q.2003.What drove Late Mesozoic extension of the northern China-Mongolia tract? Tectonophysics,369(3-4): 155-174
Pearce JA,Harris NBW and Tindle AG.1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks.Journal of Petrology,25(4): 956-983
Pitcher WS.1983.Granite type and tectonic environment.In: Hsu K ( ed.).Mountain Building Processes.London: AcademicPress
Ren JS,Niu BG and Liu ZG.1999.Soft collision,superposition orogeny and polycyclic suturing.Earth Science Frontiers,6(3): 85-93 (in Chinese with English abstract)
Rudnick RL and Gao S.2003.Composition of the continental crust.In: Turekian KK and Holland HD (eds.).Treatise on Geochemistry.Oxford: Pergamon,1-64
Sagong H,Kwon ST and Ree JH.2005.Mesozoic episodic magmatism in South Korea and its tectonic implication.Tectonics,24(5): doi: 10.1029/2004TC001720
Shao JA,Mu BL,He GQ and Zhang LQ.1997.Geological process in northern margin of North China Craton during synergic process of Paleo-Asian Ocean and paleo-Pacific plate.Science in China (Series D),27(5): 390-394 (in Chinese)
Shao JA,Zhang LQ and Mu BL.1998.Mesozoic tectonic-thermal evolution in the middle-south part of the Da Hinggan Mountains.Science in China (Series D),28(3): 193-200 (in Chinese)
Shao JA,Zhang LQ and Mu BL.1999a.Magmatism in the Mesozoic extending orogenic process of Da Hinggan MTS.Earth Science Frontiers,6(4): 339-346 (in Chinese with English abstract)
Shao JA,Zhao GL,Wang Z and Han GQ.1999b.Tectonic setting of mesozoic volcanism in Da Hinggan Mountains,northeastern China.Geological Review,45(Suppl.1): 422-430 (in Chinese with English abstract)
Shao JA,Zhang LQ,Xiao QH and Li XB.2005.Rising of Da Hinggan Mts in Mesozoic: A possible mechanism of intracontinental orogeny.Acta Petrologica Sinica,21(3): 789-794 (in Chinese with English abstract)
She HQ,Li JW,Xiang AP,Guan JD,Yang YC,Zhang DQ,Tan G and Zhang B.2012.U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution.Acta Petrologica Sinica,28(2): 571-594 (in Chinese with English abstract)
Sun LX,Ren BF,Zhao FQ,Gu YC,Li YF and Liu H.2013.Zircon U-Pb dating and Hf isotopic compositions of the Mesoporterozoic granitic gneiss in Xilinhot Block,Inner Mongolia.Geological Bulletin of China,32(2-3): 327-340 (in Chinese with English abstract)
Sun SS and McDonough WF.1989.Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes.In: Saunders AD and Norry MJ (eds.).Magmatism in the Ocean Basins.Geological Society,London,Special Publications,42(1): 313-345
Sylvester PJ.1989.Post-collisional alkaline granites.The Journal of Geology,97(3): 261-280
Tomurtogoo O,Windley BF,Kröner A,Badarch G and Liu DY.2005.Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone,central Mongolia: Constraints on the evolution of the Mongol-Okhotsk Ocean,suture and orogen.Journal of the Geological Society,162(1): 125-134
Wang CW,Jin W,Zhang XZ,Ma ZH,Chi XG,Liu YJ and Li N.2008.New understanding of the Late Paleozoic tectonics in northeastern China and adjacent areas.Journal of Stratigraphy,32(2): 119-136 (in Chinese with English abstract)
Wang CW,Sun YW,Li N,Zhao GW and Ma XQ.2009.Tectonic implications of Late Paleozoic stratigraphic distribution in Northeast China and adjacent region.Science in China (Series D),39(10): 1429-1437 (in Chinese)
Wang T,Zheng YD,Li TB and Gao YJ.2004.Mesozoic granitic magmatism in extensional tectonics near the Mongolian border in China and its implications for crustal growth.Journal of Asian Earth Sciences,23(5): 715-729
Wang T,Zheng YD,Zhang JJ,Zeng LS,Donskaya T,Guo L and Li JB.2011.Pattern and kinematic polarity of Late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes.Tectonics,30(6): doi: 10.1029/2011TC002896
Wang YX and Zhao ZH.1997.Geochemistry and origin of the Baerzhe REE-Nb-Be-Zr superlarge deposit.Geochimica,26(1): 24-35 (in Chinese with English abstract)
Whalen JB,Currie KL and Chappell BW.1987.A-type granites: Geochemical characteristics,discrimination and petrogenesis.Contributions to Mineralogy and Petrology,95(4): 407-419
Wu FY,Sun DY,Li HM,Jahn BM and Wilde SA.2002.A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis.Chemical Geology,187(1-2): 143-173
Wu FY,Sun DY,Ge WC,Zhang YB,Grant ML,Wilde SA and Jahn BM.2011a.Geochronology of the Phanerozoic granitoids in northeastern China.Journal of Asian Earth Sciences,41(1): 1-30
Wu HY,Zhang LC,Wan B,Chen ZG,Zhang XJ and Xiang P.2011b.Geochronological and geochemical constraints on Aolunhua porphyry Mo-Cu deposit,Northeast China,and its tectonic significance.Ore Geology Reviews,43(1): 78-91
Xiao WJ,Windley BF,Hao J and Zhai MG.2003.Accretion leading to collision and the Permian Solonker suture,Inner Mongolia,China: Termination of the central Asian orogenic belt.Tectonics,22(6): 1069.doi: 10.1029/2002TC00148
Xue HM,Guo LJ,Hou ZQ,Zhou XW,Tong Y and Pan XF.2009.The Xilingele complex from the eastern part of the Central Asian-Mongolia Orogenic Belt,China: Products of Early Variscan orogeny other than ancient block: Evidence from Zircon SHRIMP U-Pb ages.Acta Petrologica Sinica,25(8): 2001-2010 (in Chinese with English abstract)
Zeng QD and Liu JM.2010.Zircon SHRIMP U-Pb dating and geological significance of the granite porphyry from Banlashan porphyry molybdenum deposit in Xilamulun Molybdenum Metallogenic Belt.Journal of Jilin University (Earth Science Edition),40(4): 828-834 (in Chinese with English abstract)
Zhang JH,Gao S,Ge WC,Wu FY,Yang JH,Wilde SA and Li M.2010.Geochronology of the Mesozoic volcanic rocks in the Great Xing’an Range,northeastern China: Implications for subduction-induced delamination.Chemical Geology,276(3-4): 144-165
Zhang LQ,Shao JA and Zheng GR.1998.Metamorphic core complex in ganzhuermiao,Inner Mongolia.Scientia Geologica Sinica,33(2): 140-146 (in Chinese with English abstract)
Zhang Q.2013.Is the Mesozoic magmatismin eastern China related to the westward subduction of the Pacific plate? Acta Petrologica et Mineralogica,32(1): 113-128 (in Chinese with English abstract)
Zhang XJ,Zhang LC,Jin XD,Wu HY,Xiang P and Chen ZG.2010.U-Pb ages,geochemical characteristics and their implications of Banlashan molybdenum deposit.Acta Petrologica Sinica,26(5): 1411-1422 (in Chinese with English abstract)
Zhang XZ,Yang BJ,Wu FY and Liu GX.2006.The lithosphere structure in the Hingmong-Jihei (Hinggan-Mongolia-Jilin-Heilongjiang) region,northeastern China.Geology in China,33(4): 816-823 (in Chinese with English abstract)
Zhang XZ,Ma YX,Chi XG,Zhang FX,Sun YW,Guo Y and Zeng Z.2012.Discussion on phanerozoic tectonic evolution in northeastern China.Journal of Jilin University (Earth Science Edition),42(5): 1269-1285 (in Chinese with English abstract)
Zhao Y,Yang ZY and Ma XH.1994.Geotectonic transition from Paleo-Asian system and Paleo-Tethyan system to Paleo-Pacific active continental margin in eastern Asia.Scientia Geologica Sinica,29(2): 105-119 (in Chinese with English abstract)
Zhou Y,Ge WC and Wang QH.2011.Petrogenesis of Mesozoic granite in Wulanhaote region,central Da Hinggan Mountains: Constraints from geochemistry and Sr-Nd-Hf isotope.Acta Petrologica et Mineralogica,30(5): 901-923 (in Chinese with English abstract)
Zhou ZH,Lü LS,Yang YJ and Li T.2010.Petrogenesis of the Early Cretaceous A-type granite in the Huanggang Sn-Fe deposit,Inner Mongolia: Constraints from zircon U-Pb dating and geochemistry.Acta Petrologica Sinica,26(12): 3521-3537 (in Chinese with English abstract)
Zhou ZH,Mao JW and Lyckberg P.2012.Geochronology and isotopic geochemistry of the A-type granites from the Huanggang Sn-Fe deposit,southern Great Hinggan Range,NE China: Implication for their origin and tectonic setting.Journal of Asian Earth Sciences,49: 272-286
Zhu HC,Zhang JF and Quan H.2005.Two stages of mesozoic lithogenesis and mineralization in Daxing’anling Mountains.Journal of Jilin University (Earth Science Edition),35(4): 436-442
附中文参考文献
陈斌,赵国春,Wilde SA.2001.内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义.地质论评,47(4): 361-367
陈斌,马星华,刘安坤,木合塔尔·扎日.2009.锡林浩特杂岩和蓝片岩的锆石U-Pb年代学及其对索仑缝合带演化的意义.岩石学报,25(12): 3123-3129
葛文春,林强,孙德有,吴福元,元钟宽,李文远,陈明植,尹成孝.1999.大兴安岭中生代玄武岩的地球化学特征: 壳幔相互作用的证据.岩石学报,15(3): 396-407
葛文春,吴福元,周长勇,张吉衡.2005.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义.岩石学报,21(3): 749-762
郭锋,范蔚茗,王岳军,林舸.2001.大兴安岭南段晚中生代双峰式火山作用.岩石学报,17(1): 161-168
侯可军,李延河,邹天人,曲晓明,石玉若,谢桂青.2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报,23(10): 2595-2604
江思宏,聂凤军,刘翼飞,侯万荣,白大明,刘妍,梁清玲.2011a.内蒙古孟恩陶勒盖银多金属矿床及其附近侵入岩的年代学.吉林大学学报(地球科学版),41(6): 1755-1769
江思宏,聂凤军,白大明,刘翼飞,刘妍.2011b.内蒙古白音诺尔铅锌矿床印支期成矿的年代学证据.矿床地质,30(5): 787-798
李锦轶,莫申国,和政军,孙桂华,陈文.2004.大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约.地学前缘,11(3): 157-168
李锦轶,高立明,孙桂华,李亚萍,王彦斌.2007.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束.岩石学报,23(3): 565-582
李锦轶,张进,杨天南,李亚萍,孙桂华,朱志新,王励嘉.2009.北亚造山区南部及其毗邻地区地壳构造分区与构造演化.吉林大学学报(地球科学版),39(4): 584-605
李培忠,于津生.1993.黑龙江碾子山晶洞碱性花岗岩岩体年龄及其意义.地球化学,(4): 389-398
李双林,欧阳自远.1998.兴蒙造山带及邻区的构造格局与构造演化.海洋地质与第四纪地质,18(3): 45-54
林强,葛文春,吴福元,孙德有,曹林.2004.大兴安岭中生代花岗岩类的地球化学.岩石学报,20(3): 403-412
刘伟,潘小菲,谢烈文,李禾.2007.大兴安岭南段林西地区花岗岩类的源岩: 地壳生长的时代和方式.岩石学报,23(2): 441-460
马星华,陈斌,赖勇,鲁颖淮.2009.内蒙古敖仑花斑岩钼矿床成岩成矿年代学及地质意义.岩石学报,25(11): 2939-2950
毛景文,谢桂青,张作衡,李晓峰,王义天,张长青,李永峰.2005.中国北方中生代大规模成矿作用的期次及其地球动力学背景.岩石学报,21(1): 169-188
任纪舜,牛宝贵,刘志刚.1999.软碰撞、叠覆造山和多旋回缝合作用.地学前缘,6(3): 85-93
邵济安,牟保磊,何国琦,张履桥.1997.华北北部在古亚洲域与古太平洋域构造叠加过程中的地质作用.中国科学(D辑),27(5): 390-394
邵济安,张履桥,牟保磊.1998.大兴安岭中南段中生代的构造热演化.中国科学(D辑),28(3): 193-200
邵济安,张履桥,牟保磊.1999a.大兴安岭中生代伸展造山过程中的岩浆作用.地学前缘,6(4): 339-346
邵济安,赵国龙,王忠,韩庆军.1999b.大兴安岭中生代火山活动构造背景.地质论评,45(增刊): 422-430
邵济安,张履桥,肖庆辉,李晓波.2005.中生代大兴安岭的隆起——一种可能的陆内造山机制.岩石学报,21(3): 789-794
佘宏全,李进文,向安平,关继东,杨郧城,张德全,谭刚,张斌.2012.大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系.岩石学报,28(2): 571-594
孙立新,任邦方,赵凤清,谷永昌,李艳峰,刘卉.2013.内蒙古锡林浩特地块中元古代花岗片麻岩的锆石U-Pb年龄和Hf同位素特征.地质通报,32(2-3): 327-340
王成文,金巍,张兴洲,马志红,迟效国,刘永江,李宁.2008.东北及邻区晚古生代大地构造属性新认识.地层学杂志,32(2): 119-136
王成文,孙跃武,李宁,赵国伟,马小琴.2009.中国东北及邻区晚古生代地层分布规律的大地构造意义.中国科学(D辑),39(10): 1429-1437
王一先,赵振华.1997.巴尔哲超大型稀土铌铍锆矿床地球化学和成因.地球化学,26(1): 24-35
薛怀民,郭利军,侯增谦,周喜文,童英,潘晓菲.2009.中亚-蒙古造山带东段的锡林郭勒杂岩: 早华力西期造山作用的产物而非古老陆块?——锆石SHRIMP U-Pb年代学证据.岩石学报,25(8): 2001-2010
曾庆栋,刘建明.2010.西拉沐伦钼矿带半拉山斑岩钼矿床花岗斑岩锆石SHRIMP U-Pb测年及其地质意义.吉林大学学报(地球科学版),40(4): 828-834
张履桥,邵济安,郑广瑞.1998.内蒙古甘珠尔庙变质核杂岩.地质科学,33(2): 140-146
张旗.2013.中国东部中生代岩浆活动与太平洋板块向西俯冲有关吗? 岩石矿物学杂志,32(1): 113-128
张晓静,张连昌,靳新娣,吴华英,相鹏,陈志广.2010.内蒙古半砬山钼矿含矿斑岩U-Pb年龄和地球化学及其地质意义.岩石学报,26(5): 1411-1422
张兴洲,杨宝俊,吴福元,刘国兴.2006.中国兴蒙-吉黑地区岩石圈结构基本特征.中国地质,33(4): 816-823
张兴洲,马玉霞,迟效国,张凤旭,孙跃武,郭冶,曾振.2012.东北及内蒙古东部地区显生宙构造演化的有关问题.吉林大学学报(地球科学版),42(5): 1269-1285
赵越,杨振宇,马醒华.1994.东亚大地构造发展的重要转折.地质科学,29(2): 105-119
周漪,葛文春,王清海.2011.大兴安岭中部乌兰浩特地区中生代花岗岩的成因——地球化学及Sr-Nd-Hf同位素制约.岩石矿物学杂志,30(5): 901-923
周振华,吕林素,杨永军,李涛.2010.内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因: 锆石U-Pb年代学和岩石地球化学制约.岩石学报,26(12): 3521-3537
祝洪臣,张炯飞,权恒.2005.大兴安岭中生代两期成岩成矿作用的元素、同位素特征及其形成环境.吉林大学学报(地球科学版),35(4): 436-442