APP下载

巴尔哲碱性花岗岩锆石稀土微量元素、U-Pb年龄及其成岩成矿指示*

2014-04-10丘志力梁冬云王艳芬孙媛李榴芬

岩石学报 2014年6期
关键词:浅色深色锆石

丘志力 梁冬云 王艳芬,,3 孙媛 李榴芬

1. 中山大学地球科学系,广州 5102752. 广州有色金属研究院,广州 5106513. 江苏省有色金属华东地质勘查局,南京 2100071.

巴尓哲碱性花岗岩体是分布在我国东北兴蒙造山带中段的罕见超大型稀土、铌、铍、锆矿床。本文通过对碱性花岗岩东岩体(矿体)成矿期有关深色和浅色锆石进行阴极发光、电子探针成分和LA-ICP-MS的分析测试,利用锆石地球化学特征探讨了岩体成岩成矿作用的关系。岩体的锆石可分为浅色和深色两类,两类锆石阴极发光具有不同特征,浅色锆石可见较宽不连续振荡环带,部分锆石存在核幔分区;和浅色锆石相比,深色锆石边部或内部凹坑、裂纹处溶蚀结构更发育。两类锆石均富含Nb、U、Y和REE元素,但深色锆石具有更高的Fe含量。Ⅰ型浅色锆石轻稀土富集,重稀土分异明显,具有高Hf、Nb、Ta,低Y特征,Ⅱ型浅色锆石轻稀土亏损,重稀土分异不明显,其稀土元素球粒陨石分布模式具有明显的“M型”四分组效应,显示出熔体-流体结晶锆石的特征。深色锆石原生结晶部分稀土配分模式与浅色锆石Ⅱ型相似,轻稀土亏损,重稀土分异不明显,受流体改造部分∑REE无明显变化,但LREE和Nb、Ta、U、Th含量及Th/U比值降低。浅色锆石和深色锆石的206Pb/238U年龄相近,获得锆石U-Pb的结晶年龄为122.7±1.8Ma(MSWD=5.1),与前人用Rb-Sr法及U-Pb法测定的年龄值一致;上述结果显示,巴尓哲岩体成矿期锆石具有幔源花岗岩来源特征,大型稀有稀土金属成矿物质的富集可能和源区经历的近期富集交代及岩体在富含F,Cl等挥发分流体-水环境下作用下经历分离结晶两个因素叠加有关。可以认为,巴尓哲富稀土花岗岩成岩与成矿作用是近于同时完成的。

巴尔哲碱性花岗岩;锆石;稀土及微量元素;U-Pb年代学;成岩成矿指示

1 引言

碱性花岗岩的物质来源、同位素特征、岩石成因及其与构造环境的关系是近二十年岩石学研究的热点问题之一(Collinsetal., 1982; Eby, 1990, 1992; Windley, 1993; Poitrassonetal., 1994, 1995; Wickhametal., 1995, 1996; Kingetal., 1996, 2001; Landenberger and Collins, 1996; Turner and Foden, 1996; Boninetal., 1998; Liégeoisetal., 1998; Wuetal., 2002; Klimmetal., 2008; El-Bialy and Streck, 2009; Jiangetal., 2009)。我国东部碱性花岗岩的成因及物质来源已有相当多的学者进行过研究并提出了不同的成因观点(顾连兴, 1990; 魏春生等, 2001; Wuetal., 2002; 蔡剑辉等, 2004; 吴锁平等, 2007),但对于碱性花岗岩成岩与稀有稀土金属的矿化关系的研究却相对较少(林德松, 1994; 冯守忠, 2000; 曹志敏等, 2004; Zhaoetal., 2007; Luetal., 2008; 牛贺才等, 2008)。本文选择我国东部具有超大型稀土、铌、铍、锆矿化的内蒙巴尓哲碱性花岗岩体为研究对象,通过对其成矿期锆石稀土微量元素及其U-Pb年龄的研究来探讨岩体成因及其矿化的关系。

2 内蒙巴尓哲碱性花岗岩及样品来源

巴尔哲碱性花岗岩体位于大兴安岭南缘内蒙古哲里木盟扎鲁特旗境内,大地构造上位于兴蒙造山带中段,岩体主要由两个花岗岩岩株及小量岩脉组成,东、西两个岩体是矿区的主体;区内主要的控岩控构造是北东向黄岗梁-甘珠尔庙-乌兰浩特断裂带,区内火山和岩浆活动强烈,岩石种类复杂多样,岩性包括中基性的闪长岩、闪长斑岩,中性至酸性、酸偏碱性钠闪石花岗岩等组成,主要围岩为侏罗纪呼日格组的碱性流纹质晶屑岩屑凝灰岩。

巴尔哲碱性花岗岩岩石地球化学特征前人已做过较为详细的工作(王一先和赵振华, 1997; 冯守忠, 2000; Jahnetal., 2001; 袁忠信等, 2003; 杨武斌等, 2009, 2011);岩体与围岩间呈侵入接触关系,东岩体主要组成矿物包括微斜长石、石英、钠长石、钠闪石、霓石、锆石及磁铁矿,岩体钠闪石化、硅化蚀变强烈;和东岩体相比,西岩体的主要组成矿物条纹长石更为特征,晶洞发育;巴尔哲碱性花岗岩全岩稀土元素配分具有明显的四分组效应(王一先和赵振华, 1997; Jahnetal., 2001),同时巴尔哲碱性花岗岩还是一个明显亏损18O的花岗岩,其δ18O值为-5.61,是国内δ18O值最低的碱性花岗岩,其中长石18O较石英的氧同位素亏损更加明显,岩体和围岩具有相似的氧同位素组成(Jahnetal., 2001; 袁忠信等, 2003)。不同学者获得的全岩Rb-Sr等时线年龄基本一致,变化在122±5Ma~127.2Ma,岩体初始的87Sr/86Sr为0.703~0.7071,εNd(t)为+1.88~+2.40和εNd(t) +1.9~+2.5 (王一先和赵振华, 1997; Jahnetal., 2001; 袁忠信等, 2003)。

本文样品选自巴尔哲碱性花岗岩东岩体(矿体)从地表到深部的混合样,样品破碎粒度<0.32mm。经显微镜观察、电子探针分析及X射线衍射分析,确定该混合样的主要矿物包括微斜长石、石英、钠长石、钠闪石、霓石、锆石、独居石、锰铌铁矿、氟碳铈矿、氟碳铈钇矿、兴安石、锌日光榴石、磁铁矿、锰钛铁矿、钍石、锡石等,和前人研究一致。锆石的分选工作在广州有色金属研究院选矿工程研究所完成,混合样进行重选-磁选及人工淘洗,烘干后在双目镜下挑纯。选出的锆石大的可达到0.3mm,小者0.01mm,玻璃光泽,透明-半透明,颜色有无色、浅黄色、红色、红褐色。锆石晶型复杂,部分呈不规则粒状集合体产出。具完整晶型者以锥面较柱面发育者居多,呈双锥状和短柱状,和碱性花岗岩中锆石形态的标型特征一致。大致可分为深色和浅色两种类型,深色锆石和浅色锆石的晶型类似,晶体呈自形-半自形,锥面均主要发育{101},柱面主要发育{100},但后者自形程度较前者高。浅色锆石(样品BEZ1)长约150~300μm,长宽比约为1~2。深色锆石(BEZ2)长约140~330μm,长宽比约1.1~2.4。

3 测试方法

将分选出来的锆石按照可以观察其最大表面积晶面的原则固定在环氧树脂上,做成薄圆柱状样品靶,放入恒温箱中冷却5h,先后用不同型号的砂纸和磨料粗磨、细磨去锆石大约1/3,使样品柱上全部锆石均有较好的观察面,最后进行仔细抛光。

锆石的电子探针分析在南京大学内生金属矿床成矿机制研究国家重点实验室完成。锆石的阴极发光照像和LA-ICP-MS微量元素分析和U-Pb定年分析均在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成。

表1两类锆石电子探针成分分析(wt%)

Table 1The element compositions (wt%) of two types zircons of Baerzhe alkaline granite by EPMA

序号1234567891011121314151617181920锆石类型浅色锆石深色锆石SiO232.833.133.633.934.233.533.733.833.934.533.333.93433.632.733.633.833.533.333.2CaO0.02-0.040.020.010.020.020.050.010.160.050.090.080.070.090.070.070.10.050.03TiO20.020.040.040.050.020.040.050.070.090.230.240.260.20.190.230.170.140.270.080.04FeO-0.02--0.010.06-0.020.090.250.310.30.180.180.20.220.320.310.16-MnO0.030.010.01-0.030.040.010.070.010.090.110.140.050.130.080.07-0.14--MgO--0.030.01---0.010.010.03----0.01-0.02-0.020.05Al2O3----0.010.010--0.190.20.230.190.230.120.170.10.290.08-P2O50.08-0.020.020-0.05--0---0.01-0.04---0.05Nb2O50.17-0.10.20.170.290.40.210.290.230.230.240.220.20.270.220.290.250.510.31Ta2O50.22--0.090.08-0.02-----0.06---0.030.01--ZrO254.653.158.257.557.657.25856.55855.756.256.554.756.456.555.655.25756.658.2HfO21.280.931.161.291.521.121.371.021.080.961.011.141.171.271.091.071.011.31.111.52ZrO2/HfO242.657.450.144.537.95142.355.653.857.855.849.646.644.551.951.954.843.951.238.2Y2O37.098.053.63.83.573.83.624.573.063.173.53.264.044.094.484.964.313.424.163.66ThO20.440.250.260.050.30.170.110.010.10.030.010.050.03--0.040.20.030.030.21UO20.510.250.290.290.210.280.220.310.20.250.160.130.240.30.260.40.380.340.260.31Ce2O30.120.070.150.210.150.240.280.110.240.460.420.560.130.120.590.460.23-0.270.33Tm2O30.060.070.04-0.060.11-0.070.050.010.070.040.160.09-0.090.20.04-0.07Yb2O30.270.390.460.470.430.320.410.590.580.460.610.310.750.690.750.610.771.090.330.46Er2O30.490.510.220.210.440.430.390.450.740.430.720.340.790.760.430.640.790.430.610.46Ho2O30.27-0.010.220.090.160.33-0.76-0.27-0.4---0.38-0.950.14Dy2O30.651.010.260.520.440.450.40.410.640.460.460.280.490.620.580.161.030.270.760.45Lu2O30.480.460.30.360.50.710.120.120.110.470.410.350.410.180.660.220.530.450.330.51∑RE2O32.342.511.451.972.112.41.931.743.112.292.951.883.132.443.012.183.942.283.242.41Total99.598.398.899.199.898.999.598.499.998.198.398.298.399.099.198.999.899.399.6100

锆石的阴极发光测试仪器为日本JEOL公司的JXA-8100。电子探针成分测试仪器为JXA-8800M,测试条件为:速电压15kV,束流电流10nA,探针直径1μm。LA-ICP-MS分析仪器为Agilent7500a等离子体质谱仪和GeoLas Pro激光剥蚀系统,等离子体功率:1350w;激光波长:193nm;激光频率:10Hz;激光能量:90mJ;光斑直径:1-11号点为32μm,12-40号点为24μm,每测试5~7个点进行两次91500标样校正;微量元素含量计算以NIST610作外标,以Zr作内标,数据处理采用刘勇胜教授编写的ICPMSDataCal软件,并用91500标准锆石作为外标进行元素和同位素分馏校正,年龄计算采用ISOPLOT软件,分析过程中国际标准物质NIST610测试值与文献获得NIST610参考值在误差范围内一致(Gaoetal., 2002)。

4 分析结果

锆石的阴极发光图像显示(图1),两类锆石的阴极发光中等或较弱,根据锆石阴极发光类型可以将锆石分为几种不同类型:可见明暗相间的自形振荡生长环带,具岩浆成因特征的锆石;中心到边部只呈现微弱的明暗变化(图1e-i)锆石;具有扇形分带结构(图1m)和发育多个世代的锆石(图1n, o),其中后者又可分为早世代(核部)和晚世代(幔部),生长均较自形,且阴极发光强度无明显变化;核幔边界较模糊,核部和幔部晶面生长方向。锆石的边部或内部凹坑、裂纹处发育不同程度的溶蚀结构。和浅色锆石相比,深色锆石主要以具有扇形分带结构的锆石为主,部分锆石阴极发光很暗且无分带,锆石的边部或内部凹坑、裂纹处溶蚀结构更发育,常可见被交代部分穿插锆石的生长纹理,锆石内部呈现出斑杂状结构和多孔状,说明后者形成过程中流体的参与可能更为明显(Rubatto and Gebauer, 2000)。

图1 巴尔哲碱性花岗岩锆石阴极发光图左为浅色锆石;右为深色锆石.圆圈为测试位置Fig.1 CL images of zircons in Baerzhe granitic plutonLeft: the light-colored zircon; Right: the dark-colored zircon. Round pits are positions of laser analyses

图2 浅色锆石的稀土配分模式图(左Ⅰ型;右Ⅱ型)Fig.2 Chondrite-normalized REE abundance patterns of light zircons from Baerzhe alkaline granites (Left: type Ⅰ; Right: type Ⅱ)

图3 Ⅰ、Ⅱ型浅色锆石的Th、U含量(左)和Nb、Ta含量(右)分布图Fig.3 The distributive diagrams of Th vs. U (left) and Nb vs. Ta (right) of light color typeⅠand Ⅱ zircons in Baerzhe alkaline granites

锆石电子探针分析结果显示,两类锆石ZrO2含量明显偏低,锆石的HfO2含量为0.925%~1.524%,锆石具有明显低的Zr、Hf元素;两者均含有较高的Nb、U、Y和稀土元素,其中浅色锆石Nb的含量变化于0.10%~0.40%之间,UO2含量分布于0.13%~0.51%之间,Y2O3的含量主要分布于3.06%~4.57%之间(两个分析点除外),ΣRE2O3变化于1.45~3.13之间;深色锆石Nb的含量变化于0.22%~0.51%之间,UO2含量分布于0.26%~0.40%之间,Y2O3的含量分布于3.42%~4.96%之间,ΣRE2O3变化于2.18%~3.94%之间(表1)。因此,均属于赋矿的锆石。不同的是,浅色锆石基本上不含Fe或者只含微量的Fe,深色锆石的Fe含量为0.16%~0.32%(1个除外),总体上明显高于浅色锆石。

对19颗浅色锆石共22个点进行了LA-ICP-MS微量元素测试(表2),参考阴极发光特征,认为其中19个点具有原生结晶锆石特征,3个点具有显示有流体改造特征。稀土配分模式显示,浅色锆石总体上可分为两种类型,一类(Ⅰ型)具有轻稀土富集,重稀土分异明显特征(图2左),其稀土总量变化于14035×10-6~35731×10-6之间,平均稀土总量为24586×10-6,其LREE/HREE为0.15~1.47,Yb/Sm为3.85~16.7,δEu为0.01~0.03;另一类(Ⅱ型)具有轻稀土亏损,重稀土分异不明显特征(图2右)。其稀土总量变化于24666×10-6~46264×10-6之间,平均稀土总量为31587×10-6,LREE/HREE为0.13~0.38,Yb/Sm主要变化于2.03~9.26,δEu为0.01~0.03。

图4 浅色锆石的Hf、Y含量分布图Fig.4 The distributive diagrams of Hf vs. Y of light color typeⅠand Ⅱ zircons in Baerzhe alkaline granites

Ⅰ型浅色锆石Th含量主要变化于110×10-6~663×10-6,U含量主要变化于894×10-6~2391×10-6之间,Th/U比值除了一个数据为0.55(BEZ1-20)以外,其余的主要分布于0.11~0.29之间,另外有三个分析点具有异常低的Th/U比值(BEZ1-16,0.07;BEZ1-17,0.02;BEZ1-21,0.07),(Sm/La)N:0.16~6.73。Ⅱ型浅色锆石10个测点Th的含量总体上较第一种类型的高(图3),其中5个分析点(BEZ1-5,6,10,11,13)的Th含量分布于402×10-6~879×10-6之间,其余5个分析点的Th含量则达到1010×10-6~3903×10-6,U含量分布于1619×10-6~3957×10-6之间,无明显变化,10个分析点的Th/U比值变化于0.12~1.00,(Sm/La)N:1.39~43.9。总体上,Ⅰ型浅色锆石的Th的含量、Th/U比值和(Sm/La)N均低于于Ⅱ型浅色锆石。

Ⅰ型浅色锆石的Nb含量分布于1729×10-6~4517×10-6之间,Ta含量分布于184×10-6~411×10-6之间,Nb/Ta比值变化为8.21~19.2。Ⅱ型浅色锆石Nb含量分布于1207×10-6~2223×10-6之间(BEZ1-2除外,其Nb含量为861.54×10-6),Ta含量分布于143×10-6~271×10-6之间,Nb/Ta比值为4.45~13.3。Ⅰ型浅色锆石的Nb、Ta含量和Nb/Ta比值高于Ⅱ型浅色锆石(图3)。

另外,Ⅰ型浅色锆石Hf含量分布于1.09%~1.37%之间,Y含量分布于1.21%~3.46%之间,Hf/Y比值变化于0.32~1.12之间。Ⅱ型浅色锆石Hf含量分布于0.96%~1.33%之间,Y含量主要分布于2.7%~3.99%之间,总体上,Ⅰ型浅色锆石具有高Hf低Y特征而Ⅱ型则具有低Hf高Y特征(图4)。

根据微量元素分析结果(表3),参考阴极发光特征,深色锆石也可分为原生结晶Ⅰ型锆石和受流体的改造作用明显的Ⅱ型锆石;原生结晶部分(深色Ⅰ型)的稀土配分模式(图5)轻稀土亏损,重稀土分异明显, 其稀土总量分布于27062×10-6~33885×10-6之间,平均稀土总量为30844×10-6,其分布模式明显不同于浅色锆石;LREE/HREE为 0.11~0.44,Yb/Sm为2.13~8.34,δEu为0.02。Th/U比值变化于0.20~0.34,Nb/Ta比值变化于5.12~11.60,Hf/Y比值变化于0.26~0.41之间,(Sm/La)N为8.88~38.6。受流体改造锆石(深色Ⅱ型)根据其阴极发光特征又可分为两种类型,其一为灰色核部-白色边部类者(测点号BEZ2-28,BEZ2-29;BEZ2-32,BEZ2-33),另一种是白色核部-灰色边部者,两者稀土总量及Eu负异常特征和深色原生结晶Ⅰ型相似,但轻稀土(LREE)和Nb、Ta、U、Th含量及Th/U比值有所降低,LREE/HREE为0.08~0.44,Yb/Sm为1.87~10.8,(Sm/La)N为0.82~4.49。

锆石的U-Pb同位素分析结果显示(表4),数据在206Pb/238U-207Pb/235U谐和图中不同程度沿水平方向偏离谐和线(图6), 根据较能准确反映年轻锆石结晶时间的206Pb/238U年龄计算,浅色锆石Ⅰ206Pb/238U年龄主要分布范围为113~129Ma(BEZ1-8除外,为139Ma),浅色锆石Ⅱ年龄分布于116~126Ma之间,而深色锆石Ⅰ年龄分布于117~128Ma之间。

表3巴尔哲碱性花岗岩深色锆石稀土及微量元素分析结果(×10-6)

Table 3REE and trace element concentrations (×10-6) of dark zircons in Baerzhe alkaline granite

测点号BEZ2-27BEZ2-29BEZ2-33BEZ2-34BEZ2-35BEZ2-36BEZ2-38类型深色Ⅰ型CL特征暗色边部Sr9.972.919.604.4215.585.873.97Ba25976.729811745217698.9Sc123123121123122123123Ga3.121.303.611.415.802.071.41Pb23111112683.9215207273Th6061000108890376711933817U3020294333782759364036013280Nb1799210125691535280717002437Ta201238285283242332243SiO2(wt%)36.934.736.037.938.237.940.0P2O5(wt%)0.080.050.070.090.070.120.06TiO2(wt%)0.080.080.100.060.130.060.09Hf(wt%)1.371.301.171.261.191.101.24Y(wt%)4.613.144.084.134.484.253.06La14510212058.122483.9133Ce126223421535122418519102217Pr15042620916025898.3364Nd112733281572138316818462830Sm1104229815251447128310852232Eu11.919.716.515.110.411.922.5Gd2167267526732421202724043426Tb691640787703643774828Dy6308485667705780597069076152Ho1757118217571452173818681452Er6437387560424742653163804436Tm1205671108682712451112711Yb9207488577806095926278134883Lu11806039227561161931601ΣREE32750279043279627062338853122230288LREE3799851649784288530730357799HREE28951193882781822775285782818722489LREE/HREE0.130.440.180.190.190.110.35δEu0.020.020.020.020.020.020.02δCe1.891.561.852.081.652.141.65Hf/Y0.300.410.290.310.270.260.41Nb/Ta8.958.849.025.4211.65.1210.0Th/U0.200.340.320.330.210.331.16Yb/Sm8.342.135.104.217.227.202.19(Sm/La)N11.834.819.638.68.8820.025.9测点号BEZ2-28BEZ2-29BEZ2-32BEZ2-33BEZ2-37BEZ2-38BEZ2-39BEZ2-40类型深色Ⅱ型CL特征白色边部浅灰色边部白色边部灰色边部白色核部灰色边部白色核部灰色边部Pb67.8111184126547273442455Th205100056810881054038171982726

续表3

Continued Table 3

测点号BEZ2-28BEZ2-29BEZ2-32BEZ2-33BEZ2-37BEZ2-38BEZ2-39BEZ2-40类型深色Ⅱ型CL特征白色边部浅灰色边部白色边部灰色边部白色核部灰色边部白色核部灰色边部U15772943203733782000328031283009Nb15702101152525691206243720753412Ta160238193285223243173200Hf(wt%)1.401.301.151.171.001.241.201.19Y(wt%)3.473.144.464.083.583.064.223.38La144102433120107133113258Ce1754234214181535625221711541640Pr26142615720952.4364206341Nd184533289201572389283017452220Sm143222989351525589223222732056Eu13.619.711.416.59.1622.531.322.0Gd20142675216026731666342656603806Tb55264073078759482815521027Dy473548567098677056356152116718037Ho12601182203517571502145225441846Er45493875709960424987443664395102Tm85567113271086856711839691Yb66594885970977806376488346173842Lu8846031181922811601443366ΣREE2695727904352153279624198302883928831252LREE54508516387449781771779955236537HREE2150719388313402781822426224893376524715LREE/HREE0.250.440.120.180.080.350.160.26δEu0.020.020.020.020.030.020.030.02δCe1.711.561.331.852.031.651.431.15Hf/Y0.400.410.260.290.280.410.280.35Nb/Ta9.808.847.899.025.4010.012.017.1Th/U0.130.340.280.325.271.160.630.24Yb/Sm4.652.1310.45.1010.82.192.031.87(Sm/La)N3.311.834.492.913.831.430.821.01

5 讨论

5.1 浅色和深色锆石的成因及其与矿化的关系

本文研究的浅色和深色两类锆石的组成和锆石的理论组成相比(ZrO267.1%,SiO232.9%),ZrO2含量明显偏低,锆石具有明显低的Zr、Hf元素组成,ZrO2/HfO2比值变化于37~59之间,ZrO2与HfO2含量呈正相关性,大部分锆石以典型的双锥状为主,具有幔源型花岗岩锆石的特征(汪相和

图5 深色锆石的稀土配分模式图(上:Ⅰ型,下:Ⅱ型;球粒陨石据Sun and McDonough, 1989)Fig.5 Chondrite-normalized REE abundance patterns of dark zircons in Baerzhe alkaline granites (Upper: typeⅠ; Lower: typeⅡ; chondrite after Sun and McDonough, 1989)

图6 锆石U-Pb协和图Fig.6 La-ICP-MS U-Pb zircon concordia digram

表4巴尔哲碱性花岗岩锆石U-Pb年龄测定结果

Table 4The U-Pb isotopic data of zircons in Baerzhe alkaline granite

序号测点号Pb(total)(×10-6)Th(×10-6)U(×10-6)ThU同位素比值年龄/校正(Ma)207Pb206Pb±σ207Pb235U±σ206Pb238U±σ206Pb238U±1σ1BEZ1-8206934712650.270.00000.00000.14270.31040.01910.0027122172BEZ1-959831112990.240.05790.00970.16270.02590.01910.000312223BEZ1-127061447740.190.00000.00000.13690.13760.01900.001112274BEZ1-1444321620550.110.03690.00900.10960.02330.01910.000212225BEZ1-15203237820290.190.00000.00000.12810.23110.01920.0020123136BEZ1-16104993.212270.080.00000.00000.13070.09590.01950.001012467BEZ1-1754715515780.100.00000.00000.11680.06200.01910.000512238BEZ1-2046584616700.510.04500.00810.12550.02140.01910.000212219BEZ1-21342111416620.070.33610.32850.09400.22010.01930.00201231310BEZ1-22102651219540.260.00000.00000.02670.06670.01890.0006121411BEZ1-24200561121350.290.00000.00000.09270.16270.01920.0013123812BEZ1-1216114336950.310.04830.00110.12830.00270.01920.0001123113BEZ1-3591379140550.930.04870.00210.13010.00550.01920.0001123114BEZ1-4291113128740.390.05340.00220.13960.00560.01890.0001121115BEZ1-5232547930930.150.04520.01220.11890.02940.01800.0003115216BEZ1-1059481120850.390.04770.00870.14150.02310.01920.0002123117BEZ1-13329623426950.090.23790.19570.13550.17570.01920.00151231018BEZ1-18787169125330.670.03860.01190.12400.02900.01900.0003122219BEZ1-19142493021850.430.07270.02310.26190.08880.01880.0010120620BEZ2-2788550830040.170.03980.01870.15800.05490.01910.0005122321BEZ2-2933888927300.330.04400.00490.11670.01300.01930.0002123122BEZ2-3337493730330.310.05140.00450.13350.01180.01880.0001120123BEZ2-3419977824600.320.04740.00260.12400.00660.01910.0002122124BEZ2-3578366732870.200.04470.00910.12890.02300.01910.0002122125BEZ2-36729102932230.320.02800.01720.14340.04010.01910.0003122226BEZ2-381024322329161.110.00130.02040.12190.06060.01910.0005122327BEZ2-40226662326520.230.00010.04280.17810.12120.01910.0010122628BEZ1-6283348726600.180.03170.02560.12790.06670.02000.0005127329BEZ1-734014713570.110.04720.00760.12830.02010.01900.0002122130BEZ1-1130267016770.400.03660.01150.12700.03570.01890.0004120231BEZ2-2822416514550.110.03100.00580.08390.01520.01920.0002122132BEZ2-3279748918270.270.07730.01320.22030.03340.01920.0004122233BEZ2-372811894017515.110.00000.00000.28260.18350.02000.00161281034BEZ2-392220155825860.600.00000.00000.09940.19520.01920.001712210

注:1~27为原生结晶点;其中:1~11浅色锆石Ⅰ型;12~19浅色锆石Ⅱ型;20~27深色锆石Ⅰ型;28~34深色锆石Ⅱ型

Pupin, 1992)。两类锆石的稀土总量变化于1.4%~4.6%之间,富含稀土元素,其中稀土配分模式与一般花岗岩和伟晶岩中的锆石类似(Belousovaetal., 2002),也相似与前人研究的花岗岩类的锆石,锆石δEu分布于0.01~0.03之间,球粒陨石标准化稀土配分模式呈深“V”型,具显著的Eu负异常,指示锆石结晶时花岗质岩浆经历过高度的分异,结果和前人研究获得该岩体全岩及其它矿物的稀土组成均具有显著亏损特征具有明显的一致性(Jahnetal., 2001; Zhaoetal., 2002);但部分锆石轻稀土明显富集,和热液成因锆石特征一致(Hoskin and Ireland, 2000; Corfu, 2003; Hoskin, 2005; 毕诗健等, 2008),说明锆石主要是在花岗岩或相关的熔体-流体体系中结晶的。

但锆石的阴极发光特征及稀土配分特征同时显示,两类锆石形成先后或者经历的过程仍然有所不同。从浅色锆石到深色锆石,∑REE、HREE和Y、Th、U等微量元素含量呈渐变增长趋势,说明浅色锆石较深色锆石在岩浆中结晶早;Ball-haus等进行的Fe、Ni、Cu、Pt、Au等元素在流体相(饱和Si-NaC1的C-H-O-S流体)和硫化物相(掺有Pt、Au等金属)之间的分配实验(880~900℃、压力为0.4~lGPa)显示,流体中Fe含量明显增高(转引自刘丛强等,2001),本文深色锆石Fe的含量明显高于浅色锆石,如果考虑其阴极发光特征较少显示岩浆锆石的典型特征和强钠长石化地段锆石高度富集的事实(王一先等,1997),可以认为深色锆石的形成可能和晚期岩体经历的流体和挥发分的交代蚀变作用关系更加密切。

在浅色锆石中,浅色锆石Ⅰ的阴极发光特征以震荡环带为主,其Th/U比值主要分布于0.11~0.29之间,与火成锆石相似。Yb/Gd=3.96~9.18,重稀土分异程度较大,表现为一般花岗岩锆石的特征;而浅色锆石Ⅱ则具有显著的“M”型稀土元素四分组效应,Yb/Gd=1.07~3.45,重稀土分异不明显,具有流体-熔体共存体系结晶矿物特点。和浅色锆石Ⅱ相比,浅色锆石Ⅰ富轻稀土(LREE)、Nb、Ta,贫Th、U、Y,其稀土总量(∑REE)和重稀土(HREE)含量总体上低于前者,其Th/U比值也较低;同时,Ⅰ型浅色锆石具有高Hf低Y特征,和高温幔源型的花岗岩锆石一致,而Ⅱ型则具有低Hf高Y特征。由于Y比Hf,Th比U具有更大的离子半径,前者比后者倾向于在岩浆晚期富集(汪相和Pupin, 1992),这些特征均显示Ⅱ型浅色锆石形成晚于Ⅰ型浅色锆石。而较多的学者也认同,高度演化的花岗质岩浆晚期流体-熔体相互作用是花岗质岩浆稀土四分组效应形成的重要控制因素(赵振华等, 1992; Bau, 1996; Irber, 1999; Wuetal., 2004; Zhaoetal., 2002; 杨武斌等, 2009)。可以认为,Ⅱ型浅色锆石更可能形成于岩浆演化晚期流体-熔体共存体系环境,是流体-熔体相互作用的产物,这个结论和根据锆石Ti温度计计算获得Ⅰ型、Ⅱ型浅色锆石和深色锆石Ti饱和温度依次下降的结果相一致。

显然,矿化锆石阴极发光图像及稀土和微量元素特征显示,Ⅰ型浅色锆石形成最早,是高度分异花岗质岩浆体系结晶产物,它们的成因和幔源花岗岩有关;Ⅱ型浅色锆石形成于岩浆演化晚期流体-熔体共存的体系,其中深色锆石的形成和流体交代作用关系更密切。

5.2 巴尔哲碱性花岗岩的成岩与成矿过程

巴尔哲岩体的造岩矿物中包裹有稀有稀土金属矿物的包体,说明岩浆冷却结晶阶段,稀有稀土金属矿物已有晶出,因此,有人认为成矿或早于岩浆结晶或与岩浆结晶同时进行(冯守忠, 2000)。但由于造岩矿物不是主要的赋矿矿物,上述的认识有待进一步证据的支持。

本文研究的锆石既是成岩副矿物也是主要的赋矿矿物之一,从早到晚以及岩浆结晶及和熔体-流体有关锆石的206Pb/238U平均年龄为122.7±1.8Ma,不同类型锆石在误差范围内一致,并且和前人利用Rb-Sr等时线获得的全岩年龄122±5Ma~127.2Ma非常一致(王一先等, 1997; Jahnetal., 2001; 袁忠信等, 2003),充分显示出巴尔哲岩体侵位时间和赋矿锆石结晶时间不存在时差,或者说巴尔哲岩体的成岩和成矿是近于同时进行的,这一认识和根据矿床富晶体流体包裹体研究获得的结论一致(牛贺才等, 2008; 杨武斌等, 2009)。

由于锆石是结构高度稳定的副矿物,其稀土微量元素及氧同位素组成不易受高温变质、热液蚀变的影响而发生变化(Watson and Cherniak, 1997; Monani and Valley, 2001; 蔡剑辉等, 2004),甚至即使经历过榴辉岩相高级变质作用,锆石仍能基本保存原岩氧同位素的特征(郑永飞等, 2003; Chenetal., 2004),巴尔哲岩体锆石具有很大的负的δ18O(-10.9‰~-10.6‰)(袁忠信, 2003),显示锆石结晶时氧同位素亏损是花岗质熔体-流体具有的特征。巴尔哲花岗岩εNd(t)=+1.88~+2.50,(87Sr/86Sr)i<0.705,显示新生地幔来源特征,但岩体的岩石的f(Sm/Nd)<0(王一先等, 1997; Jahnetal., 2001),显示出岩浆曾经历了近期的富集事件,这种近期事件可能是该岩体氧同位素亏损的重要原因。就目前的资料来说,强烈伸展体制下岩石圈拆沉过程中经历过高温海水热液交换的再循环下部洋壳的部分熔融物的存在(交代)是一种可接受的解释(Wuetal., 2002; 蔡剑辉等, 2004);而岩体全岩及其“整体”组成矿物(包括本文锆石)均具有强烈的Eu亏损(δEu仅0.01~0.04),特别是一般呈现Eu正异常的长石也发生明显的Eu负异常(δEu仅0.057)(Zhaoetal., 2002),说明岩体结晶前还经历过强烈的分异,锆石是从经历了长石高度分离结晶后的残留花刚质熔体中结晶的。因此,成矿物质的富集成矿可能和再循环下部洋壳近期富集交代及富含F,Cl等挥发分流体-水环境下的分离结晶两个因素的叠加有关。

前人对岩体成岩矿物氧同位素的研究显示,岩体中长石的氧同位素强烈亏损,但石英的氧同位素则仍然在地幔来源的范围,显示出岩浆结晶时发生的挥发分-水与熔体的交代温度不会高于500℃(Jahnetal., 2001)。本文对受到流体改造的深色锆石的研究显示,遭受后期流体作用,锆石稀土元素总量无明显变化,但轻稀土(LREE)和Nb、Ta、U、Th含量及Th/U比值降低,可能是锆石在流体的参与下发生了溶蚀再结晶作用,在这个过程中,成矿有关的元素被不同程度的逐出锆石晶格(Pidgeonetal., 1998; Hoskin and Ireland, 2000; Tomascheketal., 2003),因此,我们认为后期的流体交代作用虽然可以对成矿产生贡献(使部分成矿元素重新活化并被富化),但可能不是成矿物质的主要来源。

6 结论

(1) 巴尔哲花岗岩赋矿锆石可以分为浅色和深色两种类型,两类阴极发光具有不同特征,浅色锆石可见较宽不连续振荡环带,暗示锆石形成时岩浆的温度较高,部分锆石存在核幔分区;和浅色锆石相比,深色锆石边部或内部凹坑、裂纹处溶蚀结构更发育,显示其形成过程中流体的参与更为明显。

(2) 巴尓哲岩体两类锆石均富含Nb、U、Y和REE元素,但深色锆石具有更高的Fe含量,两类锆石球粒陨石标准化稀土配分模式呈深“V”型,具非常显著的Eu负异常,岩体成矿期锆石具有幔源花岗岩来源特征。浅色锆石Ⅰ型轻稀土富集,重稀土分异明显,具有高Hf、Nb、Ta,低Y特征,浅色锆石Ⅱ型轻稀土亏损,重稀土分异不明显,其稀土元素球粒陨石分布模式具有明显的“M型”四分组效应,显示出锆石形成过程中经历过熔体-流体过程。岩浆结晶及和熔体-流体有关锆石206Pb/238U平均年龄为122.7±1.8Ma,给出了该岩体成岩及成矿的年龄。

结果显示,大型稀有稀土金属的成矿物质的富集可能和源区经历的近期富集交代及岩体在富含F,Cl等挥发分流体-水环境下的分离结晶两个因素的叠加有关,成岩与成矿近于同时完成;后期的流体交代作用虽然可以对成矿产生贡献,但可能不是成矿物质的主要来源。

致谢南京大学内生金属矿床成矿机制研究国家重点实验室陈小明教授和中国地质大学(武汉)地质过程与矿产资源国家重点实验室刘勇胜教授在锆石电子探针分析和锆石LA-ICP-MS微量元素分析、U-Pb定年及数据解释方面提供了重要帮助;中国科学院广州地球化学研究所牛贺才研究员在成文过程中提出了宝贵意见;二位审稿人提出了宝贵的修改意见;特此一并致谢。

Bau M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and ianthanide tetrad effect. Contributions to Mineralogy and Petrology, 123(3): 323-333

Belousova EB, Giffin WL, O’Reilly S and Fisher NF. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622

Bi SJ, Li JW and Zhao XF. 2008. Hydrothermal zircon U-Pb dating and geochronology of quartz vein-type gold deposits: A review. Geological Science and Technology Information, 27(1): 69-76 (in Chinese)

Bonin B, Azzouni-Sekkal A, Bussy F and Ferrag S. 1998. Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: Petrologic constraints and geodynamic settings. Lithos, 45(1-4): 45-70

Cai JH, Yan GH, Xiao CD, Wang GY, Mu BL and Zhang RH. 2004. Nd, Sr, Pb isotopic characteristics of the Mesozoic intrusive rocks in the Taihang-Da Hinggan Mountains tectonomagmatic belt and their source region. Acta Petrologica Sinica, 20(5): 1225-1242 (in Chinese with English abstract)

Cao ZM, Zheng JB, An W and Li YG. 2004. Geochemistry of Xuebaoding alkali granite and its ore-controlling effect. Journal of Ocean University of Qingdao, 34(5): 874-880 (in Chinese with English abstract)

Chen DG, Deloule E, Chen H, Xia QK and Wu YB. 2004. Preliminary study of microscale zircon oxygen isotopes for Dabie-Sulu metamorphic rocks: Ion probe in situ analyses. Chinese Science Bulletin, 48(16): 1670-1678

Collins WJ, Beams SD, White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200

Corfu F. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500

Eby GN. 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26(1-2): 115-134

Eby GN. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7): 641-644

El-Bialy MZ and Streck MJ. 2009. Late Neoproterozoic alkaline magmatism in the Arabian-Nubian Shield: the postcollisional A-type granite of Sahara-Umm Adawi pluton, Sinai, Egypt. Arabian Journal of Geosciences, 2(2): 151-174

Feng SZ. 2000. Geological characteristic and ore genesis of rare metal and rare-earth ore deposit in Baerze alkalic granite, Inner Mongolia. Volcanology & Mineral Resources, 21(2): 137-142, 149 (in Chinese with English abstract)

Gao S, Liu XM, Yuan HL, Hattendorf B, Günther D, Chen L and Hu SH. 2002. Determination of forty two major and trace elements in USGS and NIST SRM glasses by laser Ablation-Inductively coupled Plasma-Mass spectrometry. Geostandards Newsletter, 26(2): 181-196

Gu LX. 1990. Geological features, petrogenesis and metallogeny of A-type granites. Geological Science and Technology Information, 9(1): 25-31 (in Chinese with English abstract)

Hoskin P and Ireland TR. 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28(7): 627-630

Hoskin PWO. 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648

Irber W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Acta, 63(3-4): 489-508

Jahn BM, Wu FY, Capdevila R, Martineau F, Zhao ZH and Wang YX. 2001. Highly evolved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xing’an Mountains in NE China. Lithos, 59(4): 171-198

Jiang N, Zhang SQ, Zhou WG and Liu YS. 2009. Origin of a Mesozoic granite with A-type characteristics from the North China craton: Highly fractionated from I-type magmas? Contributions to Mineralogy and Petrology, 158(1): 113-130

King PL, White AJR, Chappell BW and Allen CM. 1996. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. Journal of Petrology, 38(3): 371-391

King PL, Chappell BW, Allen CM and White AJR. 2001. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501-514

Klimm K, Holtz F and King PL. 2008. Fractionation vs. magma mixing in the Wangrah Suite A-type granites, Lachlan Fold Belt, Australia: Experimental constraints. Lithos, 102(3-4): 415-434

Landenberger B and Collins W. 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust: Evidence from the Chaelundi complex, Eastern Australia. Journal of Petrology, 37(1): 145-170

Liégeois J, Navez J, Hertogen J and Black R. 1998. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids: The use of sliding normalization. Lithos, 45(1-4): 1-28

Lin DS. 1994. Rare metal and REE deposits related to alkaline granites. Mineral Resources and Geology, 8(6): 401-406 (in Chinese with English abstract)

Liu CQ, Huang ZL, Li HP and Su GL. 2001. The geofluid in the mantle and its role in ore-forming processes. Earth Science Frontiers, 8(4): 231-243 (in Chinese)

Lu JJ, Chen WF, Zhu JC, Wang RC, Zeng QT and Zhao L. 2008. The characteristics of chloritized granite type tin deposit in the Furong tin deposit district in Hunan Province, China. Geochimica et Cosmochimica Acta, 721(12): 570

Monani S and Valley JW. 2001. Oxygen isotope ratios of zircon: Magma genesis of lowδ18O granites from the British Tertiary Igneous Province, western Scotland. Earth and Planetary Science Letters, 184(2): 377-392

Niu HC, Shan Q, Luo Y, Yang WB and Yu XY. 2008. Study on the crystal-rich fluid inclusions from the Baerzhe superlarge rare elements and REE deposit. Acta Petrologica Sinica, 24(9): 2149-2154 (in Chinese with English abstract)

Pidgeon RT, Nemchin AA and Hitchen GJ. 1998. Internal structures of zircons from Archaean granites from the Darling Range batholith: Implications for zircon stability and the interpretation of zircon U-Pb ages. Contributions to Mineralogy and Petrology, 132(3): 288-299

Poitrasson F, Pin C, Duthou J and Platevoet B. 1994. Aluminous subsolvus anorogenic granite genesis in the light of Nd isotopic heterogeneity. Chemical Geology, 112(3-4): 199-219

Poitrasson F, Duthou J and Pin C. 1995. The relationship between petrology and Nd isotopes as evidence for contrasting anorogenic granite genesis: Example of the Corsican Province (SE France). Journal of Petrology, 36(5): 1251-1274

Rubatto D and Gebauer D. 2000. Use of cathodoluminescence for U-Pb zircon dating by Ion Microprobe: Some examples from the western Alps. In: Cathodoluminescence in Geosciences. Berlin Heidelberg: Springer-Verlag, 373-400

Sun SS and McDonough WF. 1989. Chemical and isotopic systematic of oceanic basalts: Implication for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Oceanic Basins. Spec. Publ. Geol. Soc. Lond., 42: 313-345

Tomaschek F, Kennedy AK, Villa IM, Lagos M and Ballhaus C. 2003. Zircons from Syros, Cyclades, Greece: Recrystallization and mobilization of zircon during high-pressure metamorphism. Journal of Petrology, 44(11): 1977-2002

Turner S and Foden J. 1996. Magma mingling in late-delamerian A-type granites at Mannum, South Australia. Mineralogy and Petrology, 56(3-4): 147-169

Wang X and Pupin JP. 1992. Distribution characteristics of trace elements in zircons from granitic rocks. Chinese Journal of Geology (Scientia Geologica Sinica), (2): 131-140 (in Chinese with English abstract)

Wang YX and Zhao ZH. 1997. Geochemistry and origin of the Baerzhe REE Nb-Be-Zr superlarge deposit. Geochimica, 26(1): 25-26 (in Chinese with English abstract)

Watson EB and Cherniak DJ. 1997. Oxygen diffusion in zircon. Earth and Planetary Science Letters, 148(3-4): 527-544

Wei CS, Zheng YF and Zhao ZF. 2001. Nd-Sr-O isotopic geochemistry constraints on the age and origin of the A-type granites in eastern China. Acta Petrologica Sinica, 17(1): 95-111 (in Chinese with English abstract)

Wickham SM, Litvinovsky BA, Zanvilevich AN and Bindeman IN. 1995. Geochemical evolution of Phanerozoic magmatism in Transbaikalia, East Asia: A key constraint on the origin of K-rich silicic magmas and the process of cratonization. J. Geophys. Res., 100(B8): 15641-15654

Wickham SM, Alberts AD, Zanvilevich AN, Litvinovsky BA, Bindeman IN and Schauble EA. 1996. A stable isotope study of anorogenic magmatism in East Central Asia. Journal of Petrology, 37(5): 1063-1095

Windley BF. 1993. Proterozoic anorogenic magmatism and its orogenic connections. Journal of the Geological Society, 150(1): 39-50

Wu FY, Sun DY, Li HM, Jahn BM and Wilde SA. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1-2): 143-173

Wu FY, Sun DY, Jahn BM and Wilde SA. 2004. A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns. Journal of Asian Earth Sciences, 23(5): 731-744

Wu SP, Wu CL and Chen QL. 2007. Characteristics and tectonic setting of the Tula aluminous A-type granite at the south side of the Altyn Tagh fault, NW China. Geological Bulletin of China, 26(10): 1385-1392 (in Chinese with English abstract)

Yang WB, Niu HC, Shan Q, LuoY, Yu XY and Qiu YZ. 2009. Ore-forming mechanism of the Baerzhe super-large rare and rare earth elements deposit. Acta Petrologica Sinica, 25: 2924 -2932 (in Chinese with English abstract)

Yang WB, Su WC, Liao SP, Niu HC, Luo Y, Shan Q and Li NB. 2011. Melt and melt-fluid inclusions in the Baerzhe alkaline granite: Information of the magmatic-hydrothermal transition. Acta Petrologica Sinica, 27(5): 1493-1499 (in Chinese with English abstract)

Yuan ZX, Zhang M and Wan DF. 2003. A discussion on the petrogenesis of18O-low alkali granite: A case study of Baerzhe alkali granite in Inner Mongolia. Acta Petrologica et Mineralogica, 22(2): 119-124 (in Chinese with English abstract)

Zhao LL, Hu RZ, Yang JS, Peng JT, Li XM and Bi XW. 2007. He, Pb and S isotopic constraints on the relationship between the A-type Qitianling granite and the Furong tin deposit, Hunan Province, China. Lithos, 97(1-2): 161-173

Zhao ZH, Masuda Akimasa and Shabani MB. 1992. Tetrad effects of rare-earth elements in rare-metal granites. Geochimica, 21(3): 221-233 (in Chinese)

Zhao ZH, Xiong XL, Hen XD, Wang YX, Qiang W, Bao ZW and Jahn BM. 2002. Controls on the REE tetrad effect in granites: Evidence from the Qianlishan and Baerzhe granites, China. Geochemical Journal, 36(6): 527-543

Zheng YF, Chen KF, Gong B and Zhao ZF. 2003. Protolith nature of ultrahigh pressure metamorphic rocks in the Dabie-Sulu orogenic belt: Evidence from zircon oxygen isotope and U-Pb age. Chinese Science Bulletin, 48(2): 110-119 (in Chinese)

附中文参考文献

毕诗健, 李建威, 赵新福. 2008. 热液锆石U-Pb定年与石英脉型金矿成矿时代: 评述与展望. 地质科技情报, 27(1): 69-76

蔡剑辉, 阎国翰, 肖成东, 王关玉, 牟保磊, 张任祜. 2004. 太行山-大兴安岭构造岩浆带中生代侵入岩Nd, Sr, Pb同位素特征及物质来源探讨. 岩石学报, 20(5): 1225-1242

曹志敏, 郑建斌, 安伟, 李佑国. 2004. 雪宝顶碱性花岗岩岩石地球化学与成矿控制. 中国海洋大学学报(自然科学版), 34(5): 874-880

冯守忠. 2000. 内蒙古巴尔哲碱性花岗岩稀有稀土矿床地质特征及成因探讨. 火山地质与矿产, 21(2): 137-142, 149

顾连兴. 1990. A型花岗岩的特征、成因及成矿. 地质科技情报, 9(1): 25-31

林德松. 1994. 与碱性花岗岩有关的稀有稀土矿床. 矿产与地质, 8(6): 401-406

刘丛强, 黄智龙, 李和平, 苏根利. 2001. 地幔流体及其成矿作用. 地学前缘, 8(4): 231-243

牛贺才, 单强, 罗勇, 杨武斌, 于学元. 2008. 巴尔哲超大型稀有稀土矿床富晶体的流体包裹体初步研究. 岩石学报, 24(9): 2149-2154

汪相, Pupin JP. 1992. 花岗岩锆石中的微量元素的配分特征. 地质科学, (2): 131-140

王一先, 赵振华. 1997. 巴尔哲超大型稀土铌铍锆矿床地球化学和成因. 地球化学, 26(1): 25-26

魏春生, 郑永飞, 赵子福. 2001. 中国东部A型花岗岩形成时代及物质来源的Nd-Sr-O同位素地球化学制约. 岩石学报, 17(1): 95-111

吴锁平, 吴才来, 陈其龙. 2007. 阿尔金断裂南侧吐拉铝质A型花岗岩的特征及构造环境. 地质通报, 26(10): 1385-1392

杨武斌, 牛贺才, 单强, 罗勇, 于学元, 裘愉卓. 2009. 巴尔哲超大型稀有稀土矿床成矿机制研究. 岩石学报, 25(11): 2924-2932

杨武斌, 苏文超, 廖思平, 牛贺才, 罗勇, 单强, 李宁波. 2011. 巴尔哲碱性花岗岩中的熔体和熔体-流体包裹体: 岩浆-热液过渡的信息. 岩石学报, 27(5): 1493-1495

袁忠信, 张敏, 万德芳. 2003. 低18O碱性花岗岩成因讨论——以内蒙巴尔哲碱性花岗岩为例. 岩石矿物学杂志, 22(2): 119-124

赵振华, 增田彰正, 夏巴尼 MB. 1992. 稀有金属花岗岩的稀土元素四分组效应. 地球化学, 21(3): 221-233

郑永飞, 陈福坤, 龚冰, 赵子福. 2003. 大别-苏鲁造山带超高压变质岩原岩性质: 锆石氧同位素和U-Pb年龄证据. 科学通报, 48(2): 110-119

猜你喜欢

浅色深色锆石
锆石的成因类型及其地质应用
深色衣服“带毒”?其实未必!
从前
为什么夏天穿深色衣服要比穿浅色衣服热?
中秋节
俄成功试射“锆石”高超音速巡航导弹
在深色的面纱下她绞着双手
春“色”撩人
西准噶尔乌尔禾早二叠世中基性岩墙群LA-ICP-MS锆石U-Pb测年及构造意义
蚊子喜欢穿深色衣服的人