5G研发,争分夺秒
2014-04-05冯岩
冯 岩
(国家无线电监测中心,北京 100037)
2013年12月4日,我国第四代移动通信(4G)牌照发放,4G技术正式走向商用。与此同时,面向下一代移动通信需求的第五代移动通信(5G)的研发也早已在世界范围内如火如荼地展开。
在移动通信的演进历程中,我国不断转变角色,依次经历了“2G跟踪,3G突破,4G同步”的各个阶段。在5G时代,我国将立志于占据技术制高点,引领世界产业的发展。为此,国内通过建立多种机制,力求全面发力5G相关工作,包括组织成立IMT-2020(5G)推进组、继续推动重大专项“新一代宽带无线移动通信网”向5G转变、启动国家863计划“5G系统前期研究开发”等,从5G业务、频率、无线传输与组网技术、评估测试验证技术、标准化及知识产权等各个方面,探究5G的发展愿景。
未来5G的需求,对包括传输技术和网络技术在内的5G关键技术提出了极大的挑战。5G将通过更高的频谱效率、更多的频谱资源,以及更密集的小区部署等,共同满足移动业务流量增长的需求。在网络容量方面,5G通信技术将比4G实现单位面积移动数据流量增长1 000倍;在传输速率方面,典型用户数据速率将提升10到100倍,峰值传输速率可达10Gb/s(4G为100Mb/s);同时,端到端时延缩短5~10倍,频谱效率提升5~10倍,网络综合能效提升1 000倍。
为支持5G的发展需求,实现5G无时无地不在的空中信息“高速公路”的构建,包括高频段传输、新型多天线传输、同时同频全双工、终端直通技术、密集网络、新型网络架构在内的传输和网络关键技术的解决方案层出不穷,呈现出了百家争鸣,百花齐放的局面。
在5G研发刚刚起步的情况下,如何建立一套全面的5G关键技术评估指标体系和评估方法,实现客观有效的第三方评估,服务技术与资源管理的发展需要,同样是当前5G技术发展所面临的重要问题。
作为国家无线电管理技术机构,国家无线电监测中心(以下简称监测中心)长期致力于频谱研究、频谱监测、移动通信关键技术研发,以及相关评估、测试与验证等工作,并已深入参与到5G相关的组织与研究项目当中。
目前,监测中心频谱工程实验室正在大力建设基于面向服务的架构(SOA)的开放式电磁兼容分析测试平台,实现大规模软件、硬件及高性能测试仪器仪表的集成与应用,将为无线电管理机构、科研院所及业界相关单位等提供良好的无线电系统研究、开发与验证实验环境。面向5G关键技术评估工作,监测中心计划利用该平台对5G系统测试与验证环境进行搭建,从而实现对5G各项关键技术客观高效的评估。
为充分把握5G技术命脉,确保与时俱进,监测中心积极投入到5G关键技术的跟踪梳理与研究工作当中,为5G频率规划、监测以及关键技术评估测试验证等工作,提前进行技术储备。下面,就对其中的一些关键技术进行简要的剖析和解读。
关键技术1:高频段传输
移动通信传统工作频段主要集中在3GHz以下的频段,使得频谱资源十分拥挤,而在高频段(如毫米波、厘米波频段)可用频谱资源丰富,能够有效缓解频谱资源紧张的现状,可以实现极高速短距离通信,支持5G容量和传输速率等方面的需求。目前,韩国三星在28GHz高频段,利用64根天线,采用自适应波束赋形技术,在2公里的距离内实现了1Gb/s的峰值下载速率,用户只需要不到一秒钟的时间可下载一部完整的电影。
高频段在移动通信中的应用是未来的发展趋势,业界对此高度关注。足够量的可用带宽,小型化的天线和设备,较高的天线增益是高频段毫米波移动通信的主要优点。但是,它也存在着传输距离短,穿透和绕射能力差,容易受到气候环境影响等缺点。同时,射频器件、系统设计等方面的问题也有待进一步研究和解决。
监测中心目前正在积极开展高频段需求研究以及潜在候选频段的遴选工作。高频段资源目前虽然较为丰富,但是仍需要进行科学规划,统筹兼顾,从而使宝贵的频谱资源得到最优配置。
关键技术2:新型多天线传输
作为近年来备受关注的技术之一,多天线技术经历了从无源到有源,从二维(2D)到三维(3D),从高阶MIMO到大规模阵列的发展,将有望实现频谱效率提升数十倍甚至更高,是目前5G技术重要的研究方向之一。
由于引入了有源天线阵列,基站侧可支持的天线协作数将达到128。此外,原来的2D天线阵列拓展成为3D天线阵列,形成新颖的3D~MIMO技术,支持多用户波束智能赋型,减少用户间干扰,结合高频段毫米波的技术,将进一步改善无线信号覆盖性能。
目前,研究人员正在针对大规模天线信道测量与建模、阵列设计与校准、导频信道、码本及反馈机制等问题进行研究,未来将支持更多的用户空分多址(SDMA),显著降低发射功率,实现绿色节能和提升覆盖能力。
关键技术3:同时同频全双工
最近几年,同时同频全双工技术吸引了业界的注意。该技术在相同的频谱上,通信的收发双方同时发射和接收信号,与传统的TDD和FDD双工方式相比,从理论上可使空口频谱效率提高1倍。
全双工技术能够突破FDD和TDD方式的频谱资源使用限制,使得频谱资源的使用更加灵活。然而,全双工技术需要具备极高的干扰消除能力,这对干扰消除技术提出了极大的挑战,同时,还存在着邻小区同频干扰问题。在多天线及组网场景下,全双工技术的应用难度更大。
关键技术4:终端直通技术(D2D)
传统的蜂窝通信系统的组网方式,是以基站为中心实现小区覆盖,而基站及中继站无法移动,其网络结构在灵活度上有一定的限制。随着无线多媒体业务不断增多,传统的以基站为中心的业务提供方式,已无法满足海量用户在不同环境下的业务需求。
D2D技术能够无需借助于基站的帮助实现通信终端之间直接通信,拓展网络连接和接入方式。由于短距离直接通信,信道质量高,能够实现较高的数据速率、较低的时延和较低的功耗;通过广泛分布的终端,能够改善覆盖,实现频谱资源的高效利用;支持更灵活的网络架构和连接方法,提升链路灵活性和网络可靠性。目前,D2D采用广播、组播和单播技术方案,未来将发展其增强技术,包括基于D2D的中继技术、多天线技术和联合编码技术等。
关键技术5:密集网络
在未来的5G通信中,无线通信网络正朝着网络多元化、宽带化、综合化、智能化的方向演进。随着各种智能终端的普及,数据流量将发生井喷式的增长。未来数据业务将主要分布在室内和热点地区,这使得超密集网络成为了实现未来5G的1 000倍流量需求的主要手段之一。超密集网络将能够改善网络覆盖,大幅度提升系统容量,并且对业务进行分流,具有更灵活的网络部署和更高效的频率复用。未来,面向高频段大带宽,将采用更加密集的网络方案,部署高达100个以上小小区/扇区。
与此同时,愈发密集的网络部署,也使得网络拓扑更加复杂,小区间干扰已经成为制约系统容量增长的主要因素,极大地降低了网络能效。干扰消除、小区快速发现、密集小区间协作、基于终端能力提升的移动性增强方案等,都是目前密集网络方面的研究热点。
关键技术6:新型网络架构
目前,LTE接入网采用网络扁平化架构,减小了系统时延,降低了建网成本和维护成本。未来5G可能采用C-RAN接入网架构。C-RAN是基于集中化处理(Centralized Processing),协作式无线电(Collaborative Radio)和实时云计算构架(Realtime Cloud Infrastructure)的绿色无线接入网构架(Clean system)。C-RAN的基本思想是通过充分利用低成本高速光传输网络,直接在远端天线和集中化的中心节点间传送无线信号,以构建覆盖上百个基站服务区域,甚至上百平方公里的无线接入系统。C-RAN架构适于采用协同技术,能够减小干扰,降低功耗,提升频谱效率,同时便于实现动态使用的智能化组网,集中处理有利于降低成本,便于维护,减少运营支出。目前,研究的内容包括C-RAN的架构和功能,如集中控制,基带池RRU接口定义,基于C-RAN的更紧密协作,如基站簇、虚拟小区等。
2013年全国工业和信息化工作会议,提出了加快结构调整和转型升级、推进两化深度融合等六点意见,包括继续实施“两化融合”、“宽带中国”等专项行动。5G网络应向着“创新驱动、集约高效、绿色低碳、智能发展、惠及民生”的方向发展。作为社会基础设施,5G移动通信网络将对促进产业创新,保障信息化发展起到非常重要的支撑作用。目前,5G关键技术仍处于争分夺秒的研究阶段,到底何种关键技术在未来能够适应5G的需求,从众多技术中脱颖而出,仍是一个未知数。全面完善地建立面向5G的技术测试评估平台,能够为5G技术提供高效客观的评估机制,有利于加速5G研究和产业化的进程。同时,5G测试评估平台将在现有认证体系要求的基础上平滑演进,从而加速测试平台的标准化及产业化,有利于我国参与未来国际5G认证体系,为5G技术未来的发展搭建腾飞的桥梁。