瞬时受体电位通道蛋白6参与血管紧张素Ⅱ诱导足细胞损伤的信号传导机制
2014-03-21蔡佳盈沈世忠综述万建新审校
蔡佳盈 沈世忠 综述 万建新 审校
近年的研究表明血管紧张素Ⅱ(Ang Ⅱ)通过其AT1受体(AT1R)导活性氧(ROS)的产生[1,2],活化瞬时受体电位通道蛋白6(TRPC6)并增强TRPC6的核转录,上调及活化的TRPC6通道可增加Ca2+内流并介导足细胞肌动蛋白骨架的重排致足突融合、参与足细胞损伤及凋亡的发生、发展。本文分别阐述足细胞TRPC6通道、Ang Ⅱ上调及活化TRPC6通道、上调及活化TRPC6通道在Ang Ⅱ致足细胞损伤及凋亡中的作用。
足细胞TRPC6通道
经典型TRPC是存在于哺乳类动物细胞膜上的一类重要的非选择性阳离子通道。该家族总共有7个亚型, TRPC为同源或异源四聚体蛋白,含有6个跨膜亚单位,一些TRPC(包括TRPC6)其细胞内氨基端和羧基端可结合钙调素。G蛋白偶联受体(GPCR)及受体酪氨酸激酶活化后,参与细胞内Ca2+浓度的调控。在TRP家族中,TRPC6亚型被认为是选择性最强的通道蛋白,通过介导Ca2+内流而发挥生理作用[2]。在肾脏生理进程中,该通道涉及肾小管Ca2+和Mg2+的重吸收,渗透压调节等。足细胞表达的TRPC6可相互结合在胞膜形成同型或异型四聚体离子通道。2005年,Winn等[3]首次发现在家族遗传性局灶节段性肾小球硬化(FSGS)患者中存在TRPC6基因突变,并且TRPC5和TRPC6被认为是足细胞中的Ca2+内流通道,而TRPC6对Ca2+的通透是无限的,因此TRPC6介导的Ca2+内流活化下游信号分子也是充足的,故可理解为信号整合及放大器。TRPC6亦属于足细胞裂孔隔膜蛋白,免疫共沉淀法显示TRPC6和裂孔隔膜蛋白nephrin及podocin紧密联系,提示TRPC6可能涉及裂孔隔膜的信号传导[4,5]。
Ang Ⅱ通过AT1R介导足细胞损伤
已证实大部分肾脏细胞,包括足细胞、系膜细胞及肾小管上皮细胞可产生Ang Ⅱ[6,7],肾素-血管紧张素系统(RAS)在调节心肾功能发挥重要作用,但是,过多RAS活化将促进炎症和氧化应激,导致肾小球滤过屏障损害和蛋白尿[8]。关于Ang Ⅱ可直接损害足细胞不断得到认可[6]。Ang Ⅱ作为肾脏病进展的危险因素,可诱导产生大量非血流动力影响,如产生氧自由基、细胞因子,并可刺激细胞凋亡、增生和肥大[9]。Ang Ⅱ可影响裂孔隔膜复合物基因的表达,如nephrin和podocin、TRPC6等。很多作用主要是通过AT1R介导的[10],早在2004年Hoffmann等[11]在转基因小鼠研究中证实,足细胞AT1R过表达足以导致蛋白尿和FSGS。AT1R通过与异源三聚体G蛋白结合激活不同第二信使介导的转导通路[12]。
Ang Ⅱ活化TRPC6并增强TRPC6的核转录
Ang Ⅱ活化下游TRPC6最近,电生理学详细揭示了TRPC5和TRPC6作为Ang Ⅱ诱导非选择性阳离子传导的下游离子通道[13]。TRPC5和TRPC6可被上游的受体活化,如GPCR,包括AT1R。Ang Ⅱ在多种酶[如黄嘌呤氧化酶、细胞色素P450、一氧化氮合成酶(NOS)、黄素氧化还原酶]参与下通过其AT1R介导ROS的产生[1]。在足细胞中,Ang Ⅱ与酶之间的联系及上调信号分子调节还原型烟酰嘌呤二核苷酸磷酸(NADPH)氧化酶机制尚不完全清楚,可能有磷脂酶D(PLD)、蛋白激酸C(PKC)、非受体酪氨酸激酶(c-Src)、表皮生长因子受体(EGFR)、磷脂酰肌醇-3激酶(PI3K)和Rac的参与。ROS为高活性分子,它可氧化脂质、促进内皮NOS解偶联从而减少NO的合成[14],局部组织ROS还可将局部释放的NO转化成ONOO-,ONOO-极易与蛋白质酪氨酸残基作用生成3-硝基酪氨酸(3-NT)[14],NO减少、ROS增多被认为是脂质、蛋白质和DNA氧化损伤的主要原因。体内实验证明,Ren2小鼠给予ROS清除剂、AT1R阻滞剂可降低肾组织内NADPH活性,减少ROS的生成,减轻足突融合[8]。ROS的增加降低了NO的生物活性,NO是RAS作用于肾脏的关键调节分子[7]。NO能够激发细胞内多种信号转导通路,刺激可溶性鸟苷环化酶催化细胞内环磷酸鸟苷(cGMP)的合成,再由cGMP激活蛋白激酶G(PKG)调节局部和全身信号。PKG存在于多种组织细胞,是重要的信号分子NO的下游底物,能够在多种水平调节Ca2+水平。故考虑足细胞是否存在NO-cGMP-PKG信号通路并通过该通路激活TPRC6通道,尚待进一步证实。TRPC6还可被Ang Ⅱ活化的AT1R及其下游第二信使二酰苷油(DAG)所激活的蛋白激酶C活化[17]。
Ang Ⅱ增强TRPC6的核转录Ang Ⅱ活化TRPC6并增强其核转录[18,19]。在心肌细胞中,Ca2+无疑被认为是导致心脏肥大的原因之一,Ang Ⅱ活化TRPC6和Ca2+依赖钙调磷酸酶、细胞活化T细胞核因子(NFAT)的正反馈环,导致TRPC6转录增加及心肌肥大[20]。而在小鼠足细胞中,Tom Nijenhuis等的研究也显示Ang Ⅱ可诱导TRPC6表达和足细胞损伤,TRPC6通过PLC相关转导信号被活化、钙离子内流、钙离子依赖的钙调磷酸酶活化进一步导致NFAT核转录而增强TRPC6相关基因的表达,足细胞细胞膜TRPC6表达增多将导致这一正反馈调节。这正反馈调节导致钙调磷酸酶的持续活化和TRPC6的进一步表达[21]。该作者为了进一步证实上述观点,用血管紧张素Ⅱ受体拮抗剂(ARB)与血管紧张素转换酶抑制剂(ACEI)处理Ang Ⅱ活化的足细胞后,Ang Ⅱ诱导的TRPC6过表达得到抑制。Wang等[22]发现TRPC6活化后介导Ca2+内流增强了足细胞NADPH氧化酶活性,而NADPH来源的ROS可上调TRPC6的表达。此外,Zhang等[23]的研究中显示,Ang Ⅱ处理足细胞后还可通过激活细胞外调节蛋白激酶(ERK)通路致核因子κB(NF-κB)核转录而上调膜表面TRPC6表达。Ang Ⅱ活化TRPC6并增强TRPC6的核转录,故TRPC6放大了Ang Ⅱ对足细胞的损伤(图1)。
图1 Ang Ⅱ活化TRPC6并增强其核转录示意图
活化TRPC6介导足细胞足突融合
足细胞膜上信号通路调控足突融合越来越多证据显示,肾小球上皮细胞(足细胞)损伤是形成蛋白尿的一个最重要机制[25-27]。以大量蛋白尿为表现的肾小球疾病,包括FSGS[27]、微小病变(MCD)[28]和糖尿病肾病[29],其中足细胞的损伤以足突融合为主要表现。基于这些特殊的细胞生物学特点,足细胞及裂孔隔膜对维持肾小球滤过屏障的完整性具有重要作用[30]。近年来足细胞膜分子的作用越来越受到重视,它们将细胞外信号传递到细胞内并影响细胞结构,尤其是足突结构。事实上,与感觉神经元相似,足细胞的细胞体和主突的功能可能仅仅是向足突提供营养。足细胞足突被功能性分为顶膜区、基膜区和裂孔隔膜区,这些区域细胞膜在结构和功能上与足突的肌动蛋白骨架紧密联系,这些细胞膜区域任何部位改变将影响肌动蛋白骨架,使其由平行可收缩的捆状排列变成杂乱无序的网状排列,肌动蛋白骨架的重排致足突融合。这一过程受很多信号分子的调控,不仅仅局限于整合素的活化、GPCR的和生长因子受体的活化的调控,还受Ca2+和内流信号通路的调控。体内研究证实,足突融合与蛋白尿的出现密切相关[31,32],并可解释足细胞的损伤可出现大量尿蛋白。
活化TRPC6介导的Ca2+内流信号致足突细胞骨架重排Winn等[3]对TRPC6的研究发现,当Ang Ⅱ使活化TRPC6介导的Ca2+内流显著增加时,足细胞内细胞骨架的排列出现异常,可改变足细胞足突的收缩结构。Ca2+内流和细胞骨架主要调节分子RhoGTP酶活化之间存在紧密关系[33],基于钙离子和肌动蛋白细胞骨架的重要作用,RhoGTP酶已成为目前很多足细胞研究的方向。在细胞水平,未受损的足突中RhoA活性占主导地位,而不稳定、可伸缩的足突中,Cdc42/Rac1活性占主导。最近研究显示,Synaptopodin是足细胞RhoGTP酶的重要调节因子,可抑制RhoGTP酶的泛素化和蛋白酶降解[34],可通过促进RhoA而抑制Cdc42/Rac1,因此可预防足突细胞骨架的重排。而活化的TRPC6通过Ca2+内流活化钙调磷酸酶并促进Synaptopodin降解,故TRPC6可通过此途径使足细胞骨架重排、足突融合。Rac1促进盐皮质激素受体进入足细胞核内。Tian D研究显示,TRPC6敲除将导致应力纤维减少、Rac1活化、运动力增强,并可通过RhoA持续活化改善[13]。
活化TRPC6介导足细胞凋亡
Ang Ⅱ被认为是诱导足细胞凋亡的始动因素之一[35],其诱导凋亡途径尚未明确,而通过TRPC6介导足细胞凋亡途径的研究则更为有限。Zhang H等体外实验证实,Ang Ⅱ可通过上调TRPC6,活化下游ERK及NF-κB的核移位,诱导足细胞凋亡[36]。Yang等[37]则在体外高糖环境下培养的小鼠足细胞研究中发现,高糖诱导ROS产生,ROS通过活化足细胞TRPC6介导Ca2+内流增加,并通过Ca2+内流激活RhoA/ROCK通路导致足细胞凋亡,敲除小鼠足细胞TRPC6基因,则足细胞凋亡明显受到抑制。Ang Ⅱ也通过其AT1R介导ROS的产生[1],故有理由推测,Ang Ⅱ是否也可通过活化TRPC6通道介导Ca2+内流及RhoA/ROCK通路致足细胞凋亡,但国内外尚缺乏相关文献报道(图2)。
图2 TRPC6介导足细胞损伤、凋亡信号传递示意图
综上所述,通过对Ang Ⅱ诱导足细胞损伤的信号传导机制和TRPC6通道的研究,我们发现足细胞内AT1R活化、TRPC6通道、Ca2+信号通路、RhoGTP酶活化、足突细胞骨架的重排和足突融合之间的联系。因此,AT1R阻滞剂、TRPC6通道可能成为非常有价值的药物靶点。
1Dandona P,Kumar V,Aljada A,et al.Angiotensin Ⅱ receptor blocker valsartan suppresses reactive oxygen species generation in leukocytes,nuclear factor-kappa B,in mononuclear cells of normal subjects:evidence of an antiinflammatory action.J Clin Endocrinol Metab,2003,88(9):4496-4501.
2Möller CC,Wei C,Altintas MM,et al.Induction of TRPC6 channel in acquired forms of proteinuric kidney disease.J Am Soc Nephrol,2007,18(1):29-36.
3Winn MP,Conlon PJ,Lynn KL,et al.A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis.Science,2005,308(5729):1801-1804.
4Reiser J,Polu KR,Möller CC,et al.TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function.Nat Genet,2005,37(7):739-744.
5Möller CC,Flesche J,Reiser J.Sensitizing the Slit Diaphragm with TRPC6 ion channels.J Am Soc Nephrol,2009,20(5):950-953.
6Durvasula RV,Shankland SJ.Activation of a local renin angiotensin system in podocytes by glucose.Am J Physiol Renal Physiol,2008,294(4):F830-F839.
7Singh R,Singh AK,Alavi N,et al.Mechanism of increased angiotensin Ⅱ levels in glomerular mesangial cells cultured in high glucose.J Am Soc Nephrol,2003,14(4):873-880.
8Whaley-Connell A,Habibi J,Johnson M,et al.Nebivolol reduces proteinuria and renal NADPH oxidase-generated reactive oxygen species in the transgenic Ren2 rat.Am J Nephrol,2009,30(4):354-360.
9Kim S,Iwao H.Molecular and cellular mechanisms of angiotensin Ⅱ-mediated cardiovascular and renal diseases.Pharmacol Rev,2000,52(1):11-34.
10 Suzuki K,Han GD,Miyauchi N,et al.Angiotensin Ⅱ type 1 and type 2 receptors play opposite roles in regulating the barrier function of kidney glomerular capillary wall.Am J Pathol,2007,170(6):1841-1853.
11 Hoffmann S,Podlich D,Hähnel B,et al.Angiotensin Ⅱ type 1 receptor overexpression in podocytes induces glomerulosclerosis in transgenic rats.J Am Soc Nephrol,2004,15(6):1475-1487.
12 Wolf G,Butzmann U,Wenzel UO.The renin-angiotensin system and progression of renal disease:from hemodynamics to cell biology.Nephron Physiol,2003,93(1):3-13.
13 Tian D,Jacobo SM,Billing D,et al.Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels.Sci Signal,2010,3(145):ra77.
14 Cooper SA,Whaley-Connell A,Habibi J,et al.Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance.Am J Physiol Heart Circ Physiol,2007,293(4):H2009-2023.
15 Pacher P,Beckman JS,Liaudet L.Nitric oxide and peroxynitrite in health and disease.Physiol Rev,2007,87(1):315-424.
16 Anderson M,Roshanravan H,Khine J,et al.Angiotensin Ⅱ activation of TRPC6 channels in rat podocytes requires generation of reactive oxygen species.J Cell Physiol,2014,229(4):434-442.
17 Kuwahara K,Wang Y,McAnally J,et al.TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling.J Clin Invest,2006,116(12):3114-3126.
18 Saleh SN,Albert AP,Peppiatt CM,et al.Angiotensin Ⅱ activates two cation conductances with distinct TRPC1 and TRPC6 channel properties in rabbit mesenteric artery myocytes.J Physiol,2006,577(Pt 2):479-495.
19 Onohara N,Nishida M,Inoue R,et al.TRPC3 and TRPC6 are essential for angiotensin Ⅱ-induced cardiac hypertrophy.EMBO J,2006,25(22):5305-5016.
20 Schlöndorff J,Del Camino D,Carrasquillo R,et al.TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription.Am J Physiol Cell Physiol,2009,296(3):C558-C569.
21 Nijenhuis T,Sloan AJ,Hoenderop JG,et al.Angiotensin Ⅱ contributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway.Am J Pathol,2011,179(4):1719-1732.
22 Wang Z,Wei X,Zhang Y,et al.NADPH oxidase-derived ROS contributes to upregulation of TRPC6 expression in puromycin aminonucleoside-induced podocyte injury.Cell Physiol Biochem,2009,24(5-6):619-626.
23 Zhang L,Ma Y,Zhang J,et al.A new cellular signaling mechanism for angiotensin Ⅱ activation of NF-kappaB:An IkappaB-independent,RSK-mediated phosphorylation of p65.Arterioscler Thromb Vasc Biol,2005,25(6):1148-1153.
24 Sakoda M,Ichihara A,Kurauchi-Mito A,et al.Aliskiren inhibits intracellular angiotensin Ⅱ levels without affecting (pro)renin receptor signals in human podocytes.Am J Hypertens,2010,23(5):575-580.
25 Nishiyama A,Kobori H,Konishi Y,et al.Mineralocorticoid receptor blockade enhances the antiproteinuric effect of an angiotensin Ⅱ blocker through inhibiting podocyte injury in type 2 diabetic rats.J Pharmacol Exp Ther,2010,332(3):1072-1080.
26 Blanco S,Vaquero M,Gómez-Guerrero C,et al.Potential role of angiotensin-converting enzyme inhibitors and statins on early podocyte damage in a model of type 2 diabetes mellitus,obesity,and mild hypertension.Am J Hypertens,2005,18(4 Pt 1):557-565.
27 Cook HT.Focal segmental glomerulosclerosis in IgA nephropathy:a result of primary podocyte injury? Kidney Int,2011,79(6):581-583.
28 Wei C,Reiser J.Minimal change disease as a modifiable podocyte paracrine disorder.Nephrol Dial Transplant,2011,26(6):1776-1777.
29 Wiggins RC.The spectrum of podocytopathies:a unifying view of glomerular diseases.Kidney Int,2007,71(12):1205-1214.
30 Hartleben B,Gödel M,Meyer-Schwesinger C,et al.Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice.J Clin Invest,2010,120(4):1084-1096.
31 Faul C,Asanuma K,Yanagida-Asanuma E,et al.Actin up:regulation of podocyte structure and function by components of the actin cytoskeleton.Trends Cell Biol,2007,17(9):428-437.
32 Tryggvason K,Patrakka J,Wartiovaara J.Hereditary proteinuria syndromes and mechanisms of proteinuria.N Engl J Med,2006,354(13):1387-1401.
33 Aspenström P,Fransson A,Saras J.Rho GTPases have diverse effects on the organization of the actin filament system.Biochem J.2004 Jan 15;377(Pt 2):327-337.
34 Asanuma K,Yanagida-Asanuma E,Faul C,et al.Synaptopodin orchestrates actin organization and cell motility via regulation of RhoA signalling.Nat Cell Biol,2006,8(5):485-491.
35 Hsu HH,Hoffmann S,Di Marco GS,et al.Downregulation of the antioxidant protein peroxiredoxin 2 contributes to angiotensin Ⅱ-mediated podocyte apoptosis.Kidney Int,2011 Nov;80(9):959-969.
36 Zhang H,Ding J,Fan Q,et al.TRPC6 up-regulation in Ang Ⅱ-induced podocyte apoptosis might result from ERK activation and NF-kappaB translocation.Exp Biol Med (Maywood),2009,234(9):1029-1036.
37 Yang H,Zhao B,Liao C,et al.High glucose-induced apoptosis in cultured podocytes involves TRPC6-dependent calcium entry via the RhoA/ROCK pathway.Biochem Biophys Res Commun,2013,434(2):394-400.