APP下载

安徽沙溪斑岩型铜金矿床成岩序列及成岩成矿年代学研究*

2014-03-14王世伟周涛发袁峰范裕俞沧海葛岭虹石诚池月余

岩石学报 2014年4期
关键词:长玢岩沙溪黑云母

王世伟 周涛发 袁峰 范裕 俞沧海 葛岭虹 石诚 池月余

1. 合肥工业大学资源与环境工程学院,合肥 2300092. 铜陵有色金属集团控股有限公司,铜陵 2440003. 安徽省地质矿产勘查局327地质队,合肥 230001

1 引言

长江中下游成矿带是我国东部重要的金属成矿带之一,长期的构造作用、岩浆作用和成矿作用形成了断隆区和断凹区的构造格局(图1a)。成矿带内主要发育矽卡岩型、矽卡岩-斑岩复合型、玢岩型和热液脉型铜铁金多金属矿床(常印佛等,1991;唐永成等,1998;吴言昌等,1999;邢凤鸣和徐祥,1996;任启江等,1991;王强等,2001;储国正,2003;陈江峰等,2001;周涛发等,2005,2008,2011)。断隆区主要发育与高钾钙碱性岩石有关的斑岩-矽卡岩型(铜金)矿床,成岩成矿作用主要集中于146~135Ma 之间(毛景文等,2004;Zhouetal., 2007;王彦斌等,2004;张达等,2006;张乐骏等,2008;蒋少涌等,2010;王世伟等,2012;徐晓春等,2012;郭维民等,2013),断凹区主要发育与橄榄安粗岩系(钾玄岩)有关的玢岩型铁矿床,成岩成矿年龄主要集中于135~126Ma(楼亚儿和杜杨松,2006;范裕等,2008;周涛发等,2008,2010,2011)。

安徽沙溪矿床为典型的斑岩型铜金矿床,位于庐枞盆地北部外缘郯庐断裂带南段、长江中下游成矿断裂带内,目前勘探工作表明,矿床的储量已达大型规模,资源量超过1Mt Cu、40t Au,其深部和周边还具有很大的找矿潜力。前人对于该矿床的地质特征、岩石成因及构造背景进行了大量的工作(任启江等,1991;Sunetal., 2010;Maoetal., 2011;吕庆田等,2004;Wangetal., 2006;Yuanetal., 2011;史大年等,2012;袁峰等,2012;Lüetal., 2013),也开展了成岩成矿时代的研究(傅斌等,1997;徐文艺等,1999;徐兆文等,2000;杨晓勇,2006;Wangetal., 2006),但是由于定年样品(如黑云母是岩浆的还是蚀变的矿物等)和方法(全岩Rb-Sr等)选择等的限制,得到的年龄跨度较大(86~143Ma),成岩成矿的准确年龄和时代一直存在争议,成为了制约该矿床成矿作用深入研究的关键科学问题。本文通过详细的野外钻孔编录,重新划分了与成矿有关的沙溪岩体岩浆岩的类型,并系统采集岩浆岩和矿石样品,进行了锆石Cameca、LA-ICP-MS U-Pb定年和辉钼矿Re-Os定年,重新厘定了沙溪矿床主要岩浆岩的侵入次序,深化了对矿床形成的认识。本次研究还发现,沙溪矿床的成岩成矿年龄与早先发现的区域斑岩型矿床不同,可能揭示长江中下游成矿带存在两期斑岩型矿床成矿作用,这对于在成矿带内下一步的找矿工作具有重要的指导意义。

2 矿区地质特征

沙溪铜金矿床位于安徽省庐江县境内,构造上位于长江中下游成矿带庐枞火山岩盆地外围、郯庐断裂带内(图1a),地处扬子板块的北缘,大别造山带东侧,是郯庐断裂带、黄破断裂带、滁河断裂的复合部位。

2.1 地层

沙溪地区的地层属于扬子地层区中的下扬子地层分区(常印佛等,1991;任启江等,1991)。矿区内出露地层主要有志留系(高家边组、坟头组)和侏罗系(磨山组、罗岭组)砂岩、白垩系的杨湾组及第四系等,志留系(高家边组和坟头组)、侏罗系(磨山组、罗岭组)砂岩主要出露于矿区中部,侏罗系(罗岭组、龙门院组)和白垩系(杨湾组)地层零星分布在矿区西南和东南边部的地势低平处。矿区内的早白垩世陆相火山岩主要分布于矿区的西北部,该火山岩系不整合覆盖于侏罗系的地层之上(图1b),志留系高家边组砂岩为含矿围岩。

2.2 构造

矿区内的构造以褶皱和断裂为主,可分为印支期和燕山期两期。以早侏罗世地层不整合界面为界,将前侏罗纪地层(以志留系为主)组成的褶皱构造划为印支期,侏罗纪以后包括白垩纪火山岩系在内地层所组成的构造划为燕山期。印支期区内主要发育以志留系高家边组、坟头组组成的一系列北北东向、南西倾伏的复式皱褶构造,主要有棋盘山向斜和铜泉山背斜(图1b),是区域菖蒲山-盛桥复式背斜的组成部分。铜泉山背斜是区内的主要皱褶,位于铜泉山一带,轴面走向北北东向,近轴部岩层陡立,轴面往南东倾斜,北西翼地层较陡,一般倾角60°以上,部分直立或倒转;南东翼稍缓,多在50°以上,近轴部岩层陡立,显示强烈挤压特征,并多被岩体侵位。该背斜因受侏罗纪地层超覆沉积、断裂破坏及岩体侵入影响,形态已不完整。棋盘山向斜位于棋盘山-虎皮山附近,核部为志留系坟头组,两翼为高家边组,除东侧外,三面为断层所切割,轴向北东30°左右,北端上翘,向南西倾伏。区内断裂可归并为四组(图1b),即近东西向、北东向、北北东向和北西向,其中北北东向断裂最为发育,北东向断裂次之。

图1 研究区地质略图(a)-长江中下游成矿带矿床分布图(据Pan and Dong, 1999; Mao et al., 2011修改);(b)-沙溪斑岩铜金矿床矿区地质图.TLF-郯城-庐江断裂;XGF-襄樊-广济断裂;YCF-阳新-常州断裂Fig.1 Sketch geological map of the study area(a)-map showing the distribution of deposits along the Middle-Lower Yangtze River Valley metallogenic belt (modified after Pan and Dong, 1999; Mao et al., 2011); (b)-geologic map of Shaxi porphyry copper-gold deposit. TLF: Tancheng-Lujiang fault; XGF: Xiangfan-Guangji fault; YCF: Yangxing-Changzhou fault

2.3 岩浆岩

矿区岩浆岩非常发育,侵入岩岩石类型较多,深部钻孔揭露矿床主要发育有粗斑闪长玢岩、中斑石英闪长玢岩、细斑石英闪长玢岩、黑云母石英闪长玢岩,其次还有脉岩,如闪长玢岩和煌绿岩等,部分岩浆岩破碎形成角砾岩,局部发育角砾状闪长玢岩。火山岩主要在矿区西北侧福泉山一带和东南部出露,主要为安山玢岩、熔岩、凝灰角砾岩等。岩体在地表由数十个大小不一、形态不规则的出露体,呈北北东向,向北撒开,向南收敛的特点分布(图1b)。

图2 沙溪斑岩铜金矿床地质剖面图A-B:凤台山6线地质剖面图;C-D:凤台山14线地质剖面图Fig.2 Geologic map of section A-B and C-D in Shaxi porphyry copper-gold depositA-B: geologic map of section exploration line 6 of Fengtaishan;C-D: geologic map of section exploration line 14 of Fengtaishan

2.4 矿化蚀变

沙溪斑岩型铜金矿床分为四个矿段,自南而北依次为龙头山矿段、断龙颈矿段、铜泉山矿段及凤台山矿段,其中凤台山矿段和铜泉山矿段为主要的矿化富集地段(图1b),矿床以浸染状和脉状矿化为特征,脉体具有多样性、多期次的特征,脉体从早到晚可分为钾硅酸盐阶段、石英硫化物阶段和石英碳酸盐阶段。矿床发育典型的斑岩型围岩蚀变,如钾硅酸盐化、青磐岩化、石英绢云母化和高岭土化,不同类型的蚀变在空间上具有明显的分带现象,钾硅酸盐阶段和石英硫化物阶段的脉体矿化对沙溪斑岩型铜矿床贡献最大(袁峰等,2012),矿体主要分布于岩体深部的钾硅酸盐化、长石分解蚀变叠加钾硅酸盐化的区域(图2)。

3 岩浆岩类型

沙溪矿床的矿化主要赋存于侵入岩体-沙溪岩体中,通过详细野外观察、钻孔编录和室内研究,作者认为沙溪岩体主要有粗斑闪长玢岩、中斑石英闪长玢岩、细斑石英闪长玢岩、黑云母石英闪长玢岩和晚期脉岩(如闪长玢岩和煌绿岩等)等类型岩石组成,下面为岩浆岩的详细描述和相互关系。

3.1 粗斑闪长玢岩(图3a, b)

主要多分布于凤台山一带(图1b),多呈岩墙状产出,岩石呈灰红或绿灰色,斑状结构,块状构造,以斑晶粗大为特征,且大小不均匀。斑晶总量约40%~45%,由斜长石、碱性长石和角闪石等组成。斜长石:主要为中长石,自形-半自形长柱状,约占25%~35%,大小为2.00~6.00mm,具聚片双晶,环带结构,局部长石略显定向排列,少量被石英交代;碱性长石:主要为正长石,自形-半自形短柱状,约占5%~8%,大小为2.00~4.00mm,发育简单双晶;角闪石呈:自形-半自形长柱状,含量10%~15%,大小为0.19~2.24mm。基质由微细粒长石和少量石英(部分次生石英呈细脉状产出)、角闪石等组成,含量55%~60%。副矿物为磁铁矿、磷灰石等。

3.2 中斑石英闪长玢岩

为矿区内主要的含矿岩体,呈南北条带状分布(图1b)。新鲜岩石呈灰绿色,局部蚀变成浅红灰或灰白色,斑状结构,块状构造。斑晶总含量约占60%,主要为斜长石、碱性长石、角闪石、石英,斜长石主要为更长石,自形-半自形长柱状,约占25%~35%,大小为1.00~4.00mm。碱性长石主要为歪长石,自形-半自形柱状,约占5%~10%,大小为1.00~3.00mm,个别发育格子双晶。角闪石呈自形-半自形长柱状,含量10%~15%,大小为0.20~2.20mm,发育角闪石式解理,常沿解理发育硅化(图3d)、绿泥石化等蚀变。石英呈半自形,常被溶蚀为椭圆形,含量约5%。副矿物为磷灰石、锆石、金红石等。在中斑石英闪长玢岩与地层和粗石英闪长玢岩接触的地段,长石斑晶变小(大小为0.3~2.0mm),岩性转变为细斑石英闪长玢岩(图3e),后者出露面积极少,矿化很弱。

3.3 黑云母石英闪长玢岩

当中斑石英闪长玢岩中的黑云母含量>5%时,为黑云母石英闪长玢岩(图3h, i),是矿区内次要含矿岩体,主要分布在矿床中心外围地段(图1b),地表岩石棕灰色,新鲜呈深灰色、绿灰色,常蚀变为浅灰、红灰、绿灰色。中-细粒斑状结构,块状构造,斑晶总量约30%~40%,局部达到50%~60%,主要为斜长石、碱性长石、角闪石、石英、黑云母,粒度不均,一般2mm左右,斜长石主要为更长石,自形-半自形板条状,约占20%~30%,大小为0.4~4.00mm,细密环带结构,有碎斑和聚斑现象,常被绢云母、碳酸盐交代;碱性长石主要为歪长石,自形-半自形柱状,约占5%~12%,大小为1.00~2.50mm。角闪石呈自形-半自形长柱状,含量约10%,大小为0.30~2.00mm,发育角闪石式解理,部分蚀变为绿泥石和碳酸盐。石英斑晶呈半自形球粒状及不规则等轴体,含量约6%,一般2mm以下,常被熔蚀成港湾状。黑云母半自形鳞片状,含量一般不少于5%,粒径1~2mm,在岩体上部常蚀变呈白色,为白云母、碳酸盐交代,但晶形大体保留。基质部分变化较大,多数呈微粒状结构,有时呈似花岗结构或微晶板条状结构。副矿物为磷灰石、磁铁矿、锆石等。

3.4 闪长玢岩

为矿区内的主要脉岩分布于矿区西北部,福泉山东侧(图1b),岩石灰色-浅灰白色(图3j),斑状结构,块状构造。斑晶为更-中长石,呈半自形柱状,粒径0.2~1.0mm。基质主要由细小的斜长石组成,其次为少量的石英,细粒结构。斜长石呈细小柱状,无定向排列,粒径0.1~0.3mm。石英呈他形不规则状集合体,具波状消光,局部分布于斜长石之间。副矿物有榍石等。

4 分析方法和测试结果

4.1 锆石Cameca U-Pb测年

4.1.1 样品采样

在地质观察、岩芯编录及岩相学工作基础上,本次工作采集了组成沙溪岩体主要的、较新鲜的岩浆岩样品:粗斑闪长玢岩(1406-340:采于1406钻孔的340m处,钻孔坐标X=3450119.23、Y=39529477.13)、中斑石英闪长玢岩(611-554:采于611钻孔554m处,钻孔坐标X=3448747.00、Y=39528764.50)、细斑石英闪长玢岩(609-628:采于609钻孔628m处,钻孔坐标X=3449772.04、Y=39529262.50)、黑云母石英闪长玢岩(610-961:采于610钻孔961m处,钻孔坐标X=3449831.56、Y=39528973.46)和闪长玢岩(FQS06:采于31°10.0210N,117°15.2040E),粗斑闪长玢岩、中斑石英闪长玢岩、细斑石英闪长玢岩和黑云母石英闪长玢岩(采样位置见图2)。采用Cameca IMS-1280离子探针锆石U-Pb精确定年测定岩体的形成年龄。晚期脉岩闪长玢岩采用LA-ICP-MS锆石U-Pb定年测定方法。

4.1.2 测试方法

在岩石学研究基础上,将样品送至河北省廊坊区调研究所实验室进行破碎经重液分离和磁选对锆石单矿物分选,锆石靶的制定和CL图像的拍摄分别在中国科学院地质与地球物理研究所和北京锆年领航科技有限公司进行。

Cameca锆石U-Pb的测定在中国科学院地质与地球物理研究所Cameca IMS-1280二次离子质谱仪(SIMS)上进行,详细分析方法见Lietal. (2009)。锆石标样与锆石样品以1:3比例交替测定。U-Th-Pb同位素比值用标准锆石Plésovice (337Ma, Slámaetal., 2008(或TEMORA (417Ma, Blacketal., 2004)校正获得,U含量采用标准锆石91500 (81×10-6, Wiedenbecketal., 1995) 校正获得,以长期监测标准样品获得的标准偏差(1SD=1.5%, Lietal., 2010)和单点测试内部精度共同传递得到样品单点误差,以标准样品Qinghu(159.5Ma, Lietal., 2009)作为未知样监测数据的精确度。普通Pb校正采用实测204Pb值。由于测得的普通Pb含量非常低,假定普通Pb主要来源于制样过程中带入的表面Pb污染,以现代地壳的平均Pb同位素组成(Stacey and Kramers, 1975)作为普通Pb组成进行校正。同位素比值及年龄误差均为1σ。数据结果处理采用ISOPLOT软件(Ludwig, 2001)。

LA-ICPMS锆石U-Pb定年分析在合肥工业大学资源与环境工程学院开展,由ICP-MS和激光剥蚀系统联机完成。ICP-MS为美国Agilent公司生产的Agilent 7500a,该仪器独有的屏蔽炬(ShieldTorch)可明显提高分析灵敏度。激光剥蚀系统为美国Coherent Inc.公司生产的GeoLasPro,该系统为工作波长193nm的ComPex102 ArF准分子激光器,样品上的光斑大小为4~160μm,能量密度范围1~45J/cm2,单脉冲能量可达200mJ,最高重复频率20Hz。

用NIST SRM 610进行载气和补偿气比例的最优化,并使208Pb达到最大的信号强度而保持较低的ThO/Th(0.1%~0.3%)和Ca2+/Ca+(0.4%~0.7%),用NIST SRM 610的238U和232Th离子信号强度的比值(238U/232Th≈1)指示样品完全气化。在分析过程中,激光剥蚀的斑束直径选为32μm,频率为6Hz,采样方式为单点剥蚀,以He作为剥蚀物质的载气,由于采用高纯度的液Ar和He气(99.999%),204Pb和202Hg的背景<100cps。ICP-MS数据采集选用一个质量峰采集一个点的跳峰方式,单点停留时间分别设定为6ms (Si,Ti,Nb,Ta和REE),15ms (204Pb,206Pb,207Pb和208Pb)和10ms (232Th和238U)。每测定5个样品点测定一次标准锆石91500(为减少偶然因素的影响,一般连续测定两次91500),每测10个样品点测一次NIST610和年龄监控样Mud Tank。每个分析点的气体背景采集时间为20~30s(一般为25s),信号采集时间为40~50s(一般为50s)。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个T型接头混合。

表1沙溪岩体主要岩浆岩锆石U-Pb分析结果

Table 1 U-Pb dating for the zircons from the Shaxi intrusion

SpotNo 207Pb/235U±s(%)206Pb/238U±s(%)r206Pb/238U(Ma)±s(%)UTh(×10-6)Th/U样品1406⁃340粗斑闪长玢岩ZK1406⁃340⁃40 13173 300 02011 540 4679128 52 0437490 11ZK1406⁃340⁃10 13503 690 02021 520 4123128 81 9381360 09ZK1406⁃340⁃30 13743 410 02021 540 4529128 92 0410550 13ZK1406⁃340⁃120 13763 050 02031 540 5061129 52 0437570 13ZK1406⁃340⁃190 13882 720 02031 560 5738129 52 0532650 12ZK1406⁃340⁃90 13543 950 02031 530 3873129 52 0375450 12ZK1406⁃340⁃210 13342 790 02031 530 5500129 82 0635630 10ZK1406⁃340⁃110 14094 540 02041 560 3426129 92 032290 03ZK1406⁃340⁃200 13463 180 02051 660 5243130 72 2359390 11ZK1406⁃340⁃50 13903 180 02052 190 6899130 92 8642580 09ZK1406⁃340⁃160 13913 270 02051 820 5570131 02 4456710 16ZK1406⁃340⁃100 14093 130 02061 540 4928131 32 0396820 21ZK1406⁃340⁃70 13422 650 02061 530 5771131 42 05611460 26ZK1406⁃340⁃60 13942 760 02071 550 5623131 92 0484550 11ZK1406⁃340⁃130 13493 500 02071 510 4310132 22 05541970 36ZK1406⁃340⁃140 13692 730 02081 520 5577132 92 0502730 15ZK1406⁃340⁃20 13612 920 02101 520 5198134 22 0589470 08样品609⁃628细斑石英闪长玢岩ZKF609⁃628⁃210 13724 210 01971 740 4128125 92 2162560 34ZKF609⁃628⁃140 13426 530 01981 720 2627126 52 162440 71ZKF609⁃628⁃220 13563 890 01981 530 3935126 61 9305840 27ZKF609⁃628⁃60 13185 510 02011 670 3034128 32 190380 42ZKF609⁃628⁃110 13804 430 02021 550 3493129 22 03512390 68ZKF609⁃628⁃120 13293 230 02031 580 4889129 32 0318840 26ZKF609⁃628⁃100 13544 530 02031 740 3848129 32 2141580 41ZKF609⁃628⁃230 14063 160 02031 530 4854129 62 05114740 93ZKF609⁃628⁃170 13054 730 02031 580 3349129 62 0285870 31ZKF609⁃628⁃160 13493 970 02031 560 3922129 82 0276800 29ZKF609⁃628⁃10 13374 940 02041 640 3308129 92 13341000 30ZKF609⁃628⁃200 13284 600 02041 500 3260130 31 93651090 30ZKF609⁃628⁃130 13593 340 02051 560 4661130 52 0270520 19ZKF609⁃628⁃50 13584 850 02051 540 3172130 52 0118900 76ZKF609⁃628⁃70 13563 280 02051 550 4732130 52 0287890 31ZKF609⁃628⁃180 14023 900 02061 510 3871131 82 0245820 34ZKF609⁃628⁃150 13362 830 02071 530 5401132 12 04381660 38样品610⁃961黑云母石英闪长玢岩ZKF610⁃961⁃150 12913 310 01941 550 4671124 11 93791450 38ZKF610⁃961⁃140 13353 770 01981 710 4524126 22 1245720 30ZKF610⁃961⁃220 13043 660 01991 520 4170126 71 9253940 37ZKF610⁃961⁃210 13594 340 01991 530 3513127 01 93131210 39ZKF610⁃961⁃30 13483 680 01991 580 4302127 32 0239580 24ZKF610⁃961⁃200 13093 040 02001 660 5477127 62 14121200 29ZKF610⁃961⁃230 13243 990 02011 570 3922128 32 03661380 38ZKF610⁃961⁃40 14234 350 02011 750 4030128 42 2260640 24ZKF610⁃961⁃60 13343 810 02011 620 4243128 62 1219540 25ZKF610⁃961⁃190 13483 760 02031 530 4069129 52 03661140 31ZKF610⁃961⁃180 13172 880 02031 560 5405129 52 05522790 51ZKF610⁃961⁃80 14035 830 02041 580 2708130 32 0213530 25ZKF610⁃961⁃110 13973 680 02051 570 4275130 62 0234860 37ZKF610⁃961⁃20 13833 820 02051 630 4276131 02 1236630 27

续表1

Continued Table 1

SpotNo 207Pb/235U±s(%)206Pb/238U±s(%)r206Pb/238U(Ma)±s(%)UTh(×10-6)Th/UZKF610⁃961⁃50 14343 350 02051 650 4905131 12 1290970 33ZKF610⁃961⁃100 13313 860 02061 600 4143131 32 1210610 29ZKF610⁃961⁃10 13743 680 02061 570 4270131 42 0232540 23ZKF610⁃961⁃170 13504 080 02061 600 3918131 52 12791280 46ZKF610⁃961⁃90 14303 450 02061 540 4476131 52 0255770 30ZKF610⁃961⁃160 13503 300 02061 540 4653131 52 04861690 35ZKF610⁃961⁃70 13833 690 02081 520 4133132 52 03681620 44样品611⁃554中斑石英闪长玢岩ZKF611⁃554⁃200 12684 280 01961 550 3610125 01 913063720 29ZKF611⁃554⁃170 13076 710 01961 540 2293125 41 93732080 56ZKF611⁃554⁃130 132511 510 01971 960 1701125 62 492160 18ZKF611⁃554⁃220 13443 780 01991 540 4084126 81 9641640 10ZKF611⁃554⁃60 13205 520 02001 680 3046127 42 16192820 46ZKF611⁃554⁃100 13086 440 02031 600 2489129 42 1637210 03ZKF611⁃554⁃70.13905.250.02051.700.3230130.62.2304400.13SpotNo.207Pb/235U206Pb/238URatio1sigmaRatio1sigmarho206Pb/238UUTh(Ma)1sigma(×10-6)Th/U样品FQS06闪长玢岩FQS06⁃200 12820 00650 01940 00050 5399124312989 20 69FQS06⁃110 12250 00700 01940 00050 4856124311069 50 63FQS06⁃120 14400 00860 01950 00060 4949125494 783 30 88FQS06⁃010 12460 00690 01960 00060 551812541772261 28FQS06⁃060 12510 00780 01980 00070 550912641431010 70FQS06⁃090 13910 00600 01980 00050 643412732131990 93FQS06⁃070 14290 00800 01990 00060 5234127410377 40 75FQS06⁃130 15860 00920 01990 00060 543312741361260 92FQS06⁃190 13190 00760 02000 00060 4873128411697 80 84FQS06⁃050 16380 00840 02020 00060 5545129411299 30 89FQS06⁃100 14990 00780 02040 00060 5496130410795 80 90FQS06⁃160 14970 00880 02040 00060 513513041231030 84

对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用中国地质大学(武汉)刘勇胜教授编写的ICP MS DataCal软件(Liuetal., 2008, 2010b, c)。U-Pb同位素定年采用标准锆石91500作外标进行同位素分馏校正(每分析5个样品点,连续分析2次91500)。对于与分析时间有关的U-Th-Pb同位素比值漂移,利用91500的变化采用线性内插的方式进行校正(Liuetal., 2010b)。锆石标准91500的U-Th-Pb同位素比值推荐值据Wiedenbecketal. (1995)。采用标准锆石Mud Tank (intercept age of 732±5Ma, Black and Gulson, 1978) 作为监控样,控制年龄的分析精度。锆石样品的U-Pb年龄谐和图绘制和年龄权重平均计算均采用Isoplot/Ex_ver3 (Ludwig, 2001) 完成。锆石U-Th-Pb同位素比值、年龄数据及锆石微量元素的单次测量的标准偏差为1σ,加权平均年龄采用2σ。因为204Pb的信号极低,以及载气中204Hg的信号的干扰,所以LA-ICP MS不能精确测定样品中204Pb的含量,因此使用嵌入的EXCEL的ComPbCorr#3.18程序 (Andersen, 2002)进行普通Pb校正。

图4 沙溪岩体主要类型岩石锆石U-Pb谐和一致曲线图Fig.4 U-Pb zircon concordia plots of magmatic rocks in the Shaxi intrusion

4.1.3 定年结果

锆石U-Pb定年的具体分析数据如表1、图4,测得沙溪岩体中粗斑闪长玢岩的锆石U-Pb谐和年龄为131±1.00Ma、坪年龄为130.60±0.97Ma;细斑石英闪长玢岩的锆石U-Pb谐和年龄为129.43±0.99Ma、坪年龄为129.46±0.97Ma;黑云母石英闪长玢岩的锆石U-Pb谐和年龄为129.25±0.90Ma、坪年龄为129.30±1.00Ma;中斑石英闪长玢岩的锆石U-Pb谐和年龄为129.00±7.30Ma、坪年龄为127.10±1.50Ma;闪长玢岩的锆石U-Pb谐和年龄为125.90±2.50Ma、坪年龄为126.7±2.10Ma。

4.2 辉钼矿Re-Os测年

在对沙溪矿床详细观察编录钻孔岩心及矿化-蚀变共生分析的基础上,采集了与黄铜矿密切共生的辉钼矿样品(样品号为1701-668,采于1701钻孔,钻孔坐标X=3448639.99、Y=39528814.77,孔深668m处,图5),样品送至河北省廊坊区调研究所实验室进行破碎,经重液分离和磁选对辉钼矿单矿物分选,在中科院地球化学研究所矿床地球化学国家重点实验室ELAN DRC-e ICP-MS上测定,具体实验流程见有关文章(Qietal., 2010, 2013)。获得沙溪矿床辉钼矿Re-Os的模式年龄为130.0±1.0Ma(表2)。同批测试的实验标准物质GBW04436(JDC)的模式年龄和推荐值分别为223.0±2.0Ma和221.4±5.6Ma。

表2沙溪矿床辉钼矿Re-Os同位素年龄

Table 2 Re-Os isotopic age of molybdenite from the Shaxi deposit

实验号原编号普通Os(×10-9)187Re(×10-6)187Os(×10-9)Re(×10-6)模式年龄(Ma)测定值1σ测定值1σ测定值1σ测定值1σ测定值1σ11701⁃668<0 0051571343398352509541301测定值HLP1633615426552232推荐值HLP178465914283 86 2221 45 6

图5 沙溪矿床辉钼矿Re-Os定年用样品Qtz-Anh-Mo-Cp-Py脉手标本(a)和显微照片(b)Qtz-石英;Anh-硬石膏;Mo-辉钼矿,Py-黄铁矿;Cp-黄铜矿Fig.5 Sample (a) and micrograph (b) of Qtz-Anh-Mo-Cp-Py vein in ore for Re-Os dating from Shaxi depositQtz-quartz; Anh-anhydrite; Mo-molybdenite; Py-pyrite; Cp-chalcopyrite

5 讨论

5.1 成岩年代及岩石侵位序列

5.1.1 成岩时代

前人对沙溪岩体已进行了很多的同位素测年工作,傅斌等(1997)采用40Ar-39Ar对石英闪长玢岩中黑云母进行测定,获得岩石的形成年龄为126.8±1.0Ma。杨晓勇(2006)采用40Ar-39Ar分别对含铜石英闪长玢岩中的黑云母和斜长石进行了测定,获得40Ar-39Ar平均坪年龄为132.62±0.28Ma,等时线平均年龄为132.59±0.46Ma,代表成矿岩体的侵入时代。徐文艺等(1999)和徐兆文等(2000)采用Rb-Sr法分别对岩石中的斜长石、岩石全岩进行了测试,获得的年龄值为143.3±5.17Ma和127.9±1.6。Wangetal.(2006)采用SHRIMP法对于石英闪长玢岩中的锆石进行了测试,获得年龄值为136±3Ma。

通常情况下,40Ar/39Ar年龄代表着所测矿物的冷却年龄(Mcdougall and Harrison, 1988),由于黑云母中氩同位素体系的封闭温度为300~350℃(Mcdougall and Harrison, 1988),所获得黑云母的Ar-Ar年龄为岩体冷却到300~350℃以下的年龄,同时,沙溪矿床普遍存在长石和黑云母化蚀变等,在挑取岩石定年单矿物样品时,无法避免蚀变矿物的混入,从而导致定年结果不可信,因此,上述的Ar-Ar年龄皆不能代表岩体的结晶年龄。同样,由于岩体蚀变作用的存在,上述研究者的Rb-Sr年龄也可能受到了热液蚀变的影响而无法获得真正的岩体结晶年龄。而Wangetal.(2006)的SHRIMP定年仅开展了岩体一个样品的年代测定,结果也明显不同于他人。由此可见,前人不同方法已获得的沙溪岩体同位素年龄的跨度太大,无法确定沙溪岩体形成的精确年龄,也不能厘定不同岩浆岩的侵位序列。因此,有必要重新深入系统地开展沙溪岩体成岩时代的研究。

本次研究中采集的组成沙溪岩体最主要的四种主要岩浆岩:粗斑闪长玢岩、中斑石英闪长玢岩、细斑石英闪长玢岩和黑云母石英闪长玢岩,其中锆石除少部分具有浑圆的外形外,绝大多数结晶较好,呈典型的长柱状晶形,具有典型的岩浆震荡环带,指示其主体为岩浆结晶的产物。由锆石的阴极发光图像(图4)可以看出,所有锆石均具有清晰的内部结构。其中,中斑石英闪长玢岩中大部分锆石显示具有核幔结构,但大多数锆石具有典型的单期生长的同心环带特征。沙溪矿床岩浆岩锆石中Th/U比值基本都大于0.1,属典型的岩浆成因锆石,并且岩石的谐和年龄与坪年龄在误差范围内一致,能代表岩浆岩的形成年龄。因此,通过锆石定年,获得沙溪矿床中粗斑闪长玢岩、中斑石英闪长玢岩、细斑石英闪长玢岩、黑云母石英闪长玢岩和闪长玢岩的成岩年龄分别为130.60±0.97Ma、127.10±1.50Ma、129.46±0.97Ma、129.30±1.00Ma和126.7±2.1Ma,均为燕山期早白垩世岩浆活动的产物。

表3沙溪岩体岩浆岩侵入次序表

Table 3 Sequence of magmatic rock in the Shaxi deposit

侵位序列岩石类型及名称确定顺序的主要依据与成矿关系年龄(Ma)早↓晚粗斑石英闪长玢岩斑晶被后期石英闪长玢岩截断,岩体被包裹略早于成矿130 60±0 97黑云母石英闪长玢岩岩石中发育的脉体被石英闪长玢岩截断成矿期129 30±1 00中细斑石英闪长玢岩细斑石英闪长玢岩、中斑石英闪长玢岩呈过渡的接触关系成矿期129 46±0 97127 10±1 50脉岩(闪长玢岩等)见呈脉状穿插并包裹石英闪长玢岩,破坏矿体成矿后126 7±2 1

5.1.2 侵位序列

前人对沙溪矿床的岩浆岩类型和岩浆的先后侵入次序进行了初步的研究(任启江等,1991;安徽省地质矿产局327地质队和南京大学地球科学系,1995*安徽省地质矿产局327地质队,南京大学地球科学系.1995. 庐江地区铜铁勘查研究. "八五"国家科技攻关计划专题成果报告,1-247),但是所描述的岩浆岩的类型种类繁多,有些先后顺序的划分,如粗斑闪长玢岩的次序排列等,没有明确的地质证据。

由上述岩石类型研究可知,沙溪岩体主要岩石类型有粗斑闪长玢岩、中斑石英闪长玢岩、细斑石英闪长玢岩、黑云母石英闪长玢岩,其次脉岩(如闪长玢岩、煌绿岩)等。根据我们的观察和编录,细斑石英闪长玢岩和中斑石英闪长玢岩为不同的岩相,在岩心中可见存在过渡的关系,细斑石英闪长玢岩没有露头,钻孔揭露也仅有少量产出,分布于中斑石英闪长玢岩与地层和粗石英闪长玢岩接触的地段(图3e),因此,细斑石英闪长玢岩和中斑石英闪长玢岩可合并为石英闪长玢岩。少量出露的黑云母石英闪长玢岩和石英闪长玢岩没有明显的界线,当石英闪长玢岩中的黑云母含量>5%(图3h, i;安徽省地质矿产局327地质队和南京大学地球科学系,1995),岩石则转变为黑云母石英闪长玢岩,但局部可见黑云母石英闪长玢岩中发育的脉体被石英闪长玢岩截断,表明黑云母石英闪长玢岩略早于石英闪长玢岩。石英闪长玢岩和黑云母石英闪长玢岩是主要的赋矿岩石,其中,石英闪长玢岩赋存了沙溪矿床绝大部分矿体,少量矿体赋存于黑云母石英闪长玢岩和地层中。晚期的脉岩(闪长玢岩、煌绿岩)等穿插或包裹石英闪长玢岩,明显晚于成矿岩体(图3k)。而对于同样无矿的粗斑闪长玢岩是形成于成矿前还是成矿后,有不同的认识(任启江等,1991;安徽省地质矿产局327地质队和南京大学地球科学系,1995)。作者通过野外编录认为粗斑闪长玢岩应于成矿前形成,主要基于以下几点:①粗斑闪长玢岩的斑晶被细斑石英闪长玢岩破坏(图3f, g);②粗斑闪长玢岩发育早期蚀变(磁铁矿化、钾长石化);③粗斑闪长玢岩被石英闪长玢岩包裹(图2)。同时,上述年代学显示粗斑闪长玢岩略早。通过上述研究可得沙溪矿床主要岩浆岩的侵位序列如表3,这基本与上述年代学结果一致。

5.2 成矿年代

前人对沙溪矿床的成矿时代也进行了一些研究工作。徐文艺等(1999)测定了沙溪斑岩矿床的成矿时代,采用Ar/Ar快中子活化定年法对钾化蚀变岩进行了测定。分析样S2-170采自沙溪矿区钻孔ZK802深558m处,该样品为遭受强烈钾质蚀变的石英闪长玢岩全岩样,获得全岩样40Ar/39Ar年龄谱的坪年龄为123.6±0.7Ma。由于沙溪矿床中钾硅酸盐阶段并不是主成矿阶段(袁峰等,2012),并且钾硅酸盐化样品常受到晚期长石分解蚀变的叠加,并且这一由全岩样品获得的40Ar/39Ar年龄显然不能代表成矿年龄。杨晓勇(2006)采用40Ar-39Ar分别对含铜石英闪长玢岩中的黑云母和斜长石进行了测定,获得最小平均视年龄86Ma,认为可能表示后期一次热事件,对应于斑岩体与Cu-Au矿化有关的热液活动。而斑岩矿床形成时多次侵入活动导致的重复循环的热液过程持续最长时间约2Myr(Chiaradiaetal., 2013),可见这一成矿年龄明显估算过低。

由本次辉钼矿Re-Os同位素定年测试结果可知,与黄铜矿共生的辉钼矿的Re-Os模式年龄为130.0±1.0Ma,同批测试的实验标准物质GBW04436(JDC)的模式年龄(223.0±2.0Ma)与推荐年龄(221.4±5.6Ma)基本一致,表明本次由辉钼矿测定的模式年龄比较精确。因此,130.0±1.0Ma可代表沙溪矿床的成矿年龄,表明沙溪矿床形成于早白垩世,辉钼矿的Re-Os年龄与赋矿岩浆岩(沙溪岩体的中细斑石英闪长玢岩和黑云母石英闪长玢岩)的Cameca U-Pb年龄在误差范围内一致,早于闪长玢岩等晚期脉岩,说明矿床是中细斑石英闪长玢岩和黑云母石英闪长玢岩有关岩浆热液作用的产物。

图6 沙溪岩体与区域侵入岩的SiO2-K2O(a)和Y-Sr/Y(b)对比图解数据来自蒋少涌等(2008)、任启江等(1991)、王强等(2001,2003)、徐文艺等(1997)、刘珺等(2007)、杨荣勇等(1993)、曹毅等(2008)、赵振华和涂光炽(2003)、郭维民等(2013)Fig.6 Diagram of SiO2-K2O (a) and Y-Sr/Y (b) of magmatic rock in the Shaxi deposit and other depositsData from Jiang et al. (2008), Ren et al. (1991), Wang et al. (2001, 2003), Xu et al. (1997), Liu et al. (2007), Yang et al. (1993), Cao et al. (2008), Zhao and Tu (2003), Guo et al. (2013)

5.3 区域对比

长江中下游成矿带成岩成矿时代大致分为145~137Ma、135~127Ma和126~123Ma三个阶段(周涛发等,2008)。目前,成矿带内发现斑岩型铜(钼、金)矿床主要分布于鄂东南(铜山口矿床)、九瑞(城门山矿床、封三洞矿床)、庐枞(沙溪矿床)和铜陵(冬瓜山深部、舒家店铜矿床)等矿集区(常印佛等,1991;唐永成等,1998;Pan and Dong,1999;谢桂青等,2006;刘延年和钱应敏,2001;徐文艺等,1999;王立本等,1997;杜建国等,2003;储国正,2003),这些斑岩型矿床的成岩成矿年龄主要集中于145~136Ma(王世伟等,2011,2012;吴才来等,2010;赖小东等,2012;陆三明,2007;徐晓春等,2012;Yangetal., 2011;郭维民等,2013;谢桂青等, 2006;Lietal., 2008),而沙溪矿床的成岩成矿时代则主要集中于130~127Ma,说明长江中下游成矿带存在两阶段斑岩型铜金矿化,沙溪矿床为区域第二阶段的斑岩成矿作用的产物。迄今为止,长江中下游成矿带已发现的斑岩矿床多为第一阶段的斑岩型矿床,如冬瓜山铜矿、城门山铜矿、铜山口矿床、舒家店矿床、武山矿床和封三洞矿床等,第二阶段的斑岩矿床目前仅发现于沙溪,沙溪斑岩型铜金矿床已达大型规模,且通过勘探其储量有继续扩大的可能,因此推测长江中下游成矿带存在寻找第二阶段斑岩矿床的巨大潜力。

长江中下游成矿带内成岩成矿作用在时空上表现出明显的分区性和演化趋势(周涛发等,2008)。145~137Ma的岩浆活动主要发生在断隆区(如铜陵地区等和鄂东南地区),是铜金矿化的主要时期;135~127Ma的岩浆活动主要发生在断陷区(如庐枞盆地、宁芜盆地等),是铁矿化的主要时期(周涛发等,2008)。第一阶段斑岩矿床的围岩常为志留系-三叠系地层,常发育矽卡岩化和代表矿化期间流体较还原的磁黄铁矿(如冬瓜山矿床、舒家店矿床),而沙溪矿床围岩为志留系高家边组砂岩,无矽卡岩蚀变,产出大量表明热液流体较氧化的热液硬石膏,可见,两阶段斑岩矿床的成矿流体明显不同。

沙溪矿床位于庐枞盆地的北外缘、郯庐断裂与罗河断裂之间,罗河断裂作为郯庐断裂的分支(董树文等,2009),是庐枞盆地重要的岩浆上涌和喷发通道(董树文等,2010),其成岩成矿年龄与庐枞盆地和郯庐断裂带内的成岩成矿年龄(Zhouetal., 2007; 周涛发等, 2008; 范裕等, 2008; 袁峰等, 2008; Liuetal., 2010a)一致,但沙溪地区主要为斑岩型铜、金矿化,成矿岩体的岩石为钙碱性系列,具有埃达克岩的性质,明显不同于庐枞盆地和郯庐断裂带内侵入岩的性质(Liuetal., 2010a),也不同于断隆区(武山矿床、封三洞矿床、冬瓜山矿床和舒家店矿床、铜山口矿床)斑岩矿床岩石为高钾钙碱性的性质(图6)。因此,我们认为沙溪斑岩型铜金矿床可能为郯庐断裂和长江断裂联合作用背景下的岩浆作用及其岩浆热液演化的产物。

6 结论

(1)沙溪岩体从早到晚的岩石侵位序列为粗斑闪长玢岩、黑云母石英闪长玢岩、中细斑石英闪长玢岩、闪长玢岩等脉岩,其成岩年龄分别为130.60±0.97Ma、129.30±1.00Ma、127.10±1.50Ma、129.46±0.97Ma和126.7±2.1Ma,为燕山期早白垩时岩浆活动的产物。

(2)沙溪矿床中与黄铜矿共生的辉钼矿的Re-Os模式年龄为130.0±1.0Ma,代表沙溪矿床的成矿年龄,成矿与沙溪岩体中细斑石英闪长玢岩和黑云母石英闪长玢岩关系密切。

(3)沙溪铜金矿床为长江中下游成矿带第二阶段成岩成矿作用的产物,成矿带具有寻找第二阶段斑岩型铜金矿床的潜力。

致谢本文的研究工作得到了常印佛院士、唐永成教授、汤加富教授、李建设教授和吕庆田老师的指导和帮助;研究工作还得到了铜陵有色金属(集团)公司科技项目的支持;Cameca锆石U-Pb定年得到了中国科学院地质与地球物理研究所李献华老师和李秋立老师的大力帮助;辉钼矿Re-Os定年得到了中国科学院地球化学研究所漆亮老师的大力帮助;在此一并表示衷心感谢!

Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report204Pb. Chemical Geology, 192(1-2): 59-79

Black LP and Culson BL. 1978. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. BMR J. Aust. Geophys., 3: 227-232

Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbel IH, Korsch RJ, Williams IS and Foudoulis C. 2004. Improved206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect: SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(1-2): 115-140

Cao Y, Du YS, Cai CL, Qin XL, Li ST and Xiang WS. 2008. Mesozoic A-type granitoids and xenoliths in the Lujiang-Zongyang area, Anhui Province: Significance in post-collisional magmatic evolution. Geological Journal of China Universities, 14(4): 565-576 (in Chinese with English abstract)

Chang YF, Liu XP and Wu CY. 1991. The Copper-iron Belt of the Lower and Middle Reaches of the Changjiang River. Beijing: Geological Publishing House, 1-234 (in Chinese with English abstract)

Chen JF, Xie Z, Zhang X and Zhou TX. 2001. Crustal evolution in Anhui: Nd and Sr isotopic evidence. Geology of Anhui, 11(2): 123-130 (in Chinese with English abstract)

Chiaradia M, Schaltegger U, Spikings RA, Wotzlaw JF and Ovtcharova M. 2013. How accurately can we date the duration of magmatic-hydrothermal events in porphyry systems? Economic Geology, 108(4): 565-584

Chu GZ. 2003. Metallogenic system of Shizishan Cu-Au ore-field in Tongling area and its prospecting significances. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-141 (in Chinese with English summary)

Dong SW, Gao R, Lü QT, Zhang JS, Zhang RH, Xue HM, Wu CL, Lu ZW and Ma LC. 2009. Deep structure and ore-forming in Lujiang-Zongyang ore concentrated area. Acta Geoscientica Sinica, 30(3): 279-284 (in Chinese with English abstract)

Dong SW, Xiang HS, Gao R, Lü QT, Li JS, Zhan SQ, Lu ZW and Ma LC. 2010. Deep structure and ore formation within Lujiang-Zongyang volcanic ore concentrated area in Middle to Lower Reaches of Yangtze River. Acta Petrologica Sinica, 26(9): 2529-2542 (in Chinese with English abstract)

Du JG, Dai SQ, Mo XX, Deng JF and Xu W. 2003. Petrogenic and metallogenic settings of area along Yangtze River in Yanshanian, Anhui Province. Earth Science Frontier, 10(4): 551-561 (in Chinese with English abstract)

Fan Y, Zhou TF, Yuan F, Lu SM and David C. 2008. LA-ICP-MS zircon U-Pb ages of the A-type granites in the Lu-Zong (Lujiang-Zongyang) area and their geological significances. Acta Petrologica Sinica, 24(8): 1715-1725 (in Chinese with English abstract)

Fu B, Ren QJ, Xing FM, Xu ZW, Hu WY and Zheng YF. 1997.40Ar-39Ar dating of copper (GOLD)-bearing porphyry in Shaxi, Anhui Province and its geological significance. Geological Review, 43(3): 310-316 (in Chinese with English abstract)

Guo WM, Lu JJ, Jiang SY, Zhang RQ and Zhao ZJ. 2013. Chronology, Hf isotopes, geochemistry, and petrogenesis of the magmatic rocks in the Shizishan ore field of Tongling, Anhui Province. Science China (Earth Science), 56(6): 993-1013

Jiang SY, Li L, Zhu B, Ding X, Jiang YH, Gu LX and Ni P. 2008. Geochemical and Sr-Nd-Hf isotopic compositions of granitoids from the Wushan copper deposit, Jiangxi Province and their implications for petrogenesis. Acta Petrologica Sinica, 24(8): 1679-1690 (in Chinese with English abstract)

Jiang SY, Sun Y, Sun ZM, Bian LZ, Xiong YG, Yang SY, Cao ZQ and Wu YM. 2010. Reiterative fault systems and superimposed mineralization in the Jiurui metallogenic cluster district, Middle and Lower Yangtze River mineralization belt, China. Acta Petrologica Sinica, 26(9): 2615-2625 (in Chinese with English abstract)

Lai XD, Yang XY, Sun WD and Cao XS. 2012. Chronological-geochemical characteristics of the Shujiadian intrusion, Tongling ore cluster field: Its significance to Metaliogenesis. Acta Geologica Sinica, 86(3): 470-485 (in Chinese with English abstract)

Li JW, Zhao XF, Zhou MF, Vasconcelos PM, Ma CQ, Deng XD, de Souza ZS, Zhao YX and Wu G. 2008. Origin of the Tongshankou porphyry-skarn Cu-Mo deposit, eastern Yangtze craton, eastern China: Geochronological, geochemical, and Sr-Nd-Hf isotopic constraints. Mineralium Deposita, 43(3): 315-336

Li XH, Liu Y, Li QL, Guo CH and Chamberlain KR. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem. Geophys. Geosyst., 10: Q04010, doi: 10.1029/2009GC002400

Liu J, Zhou TF, Yuan F, Wu MA, Lu SM and Qian CC. 2007. Rock geochemistry and genesis of the Bajiatan intrusion in the Lujiang-Zongyang volcanic basin, Anhui. Acta Petrologica Sinica, 23(10): 2615-2622 (in Chinese with English abstract)

Liu SA, Li SG, He YS and Huang F. 2010a. Geochemical contrasts between Early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: Implications for petrogenesis and Cu-Au mineralization. Geochimica et Cosmochimica Acta, 74(24): 7160-7178

Liu YN and Qian YM. 2001. New Achievements of Au (Ag) polymetal ores prospecting in outside surrounding area around Fengshandong gold deposit in eastern Hubei. Hubei Geology & Mineral Resources, 15(4): 53-58 (in Chinese with English abstract)

Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43

Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010b. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571

Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J and Chen HH. 2010c. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, (15): 1535-1546

Lou YE and Du YS. 2006. Characteristics and zircon SHRIMP U-Pb ages of the Mesozoic intrusive rocks in Fanchang, Anhui Province. Geochimica, 35(4): 359-366 (in Chinese with English abstract)

Lu SM. 2007. Magmatism and fluid mineralizationin Shizishan copper-gold ore-field of Tongling, Anhui Province. Ph. D. Dissertation. Hefei: Hefei University of Technology, 1-144 (in Chinese with English summary)

Lü QT, Hou ZY, Yang ZS and Shi DN. 2004. Underplating and the dynamical evolution model in the Middle-Lower of the Yangtze River: Constraints from geophysical data. Science in China (Series D), 34(9): 783-794 (in Chinese)

Lü QT, Yan JY, Shi AN, Dong SW, Tang JT, Wu MG and Chang YF. 2013. Reflection seismic imaging of the Lujiang-Zongyang volcanic basin, Yangtze Metallogenic Belt: An insight into the crustal structure and geodynamics of an ore district. Tectonophysics, 606: 60-77

Ludwig KR.. 2001. Users manual for Isoplot/Ex (rev. 2.49). Berkeley Geochronology Centre Special Publication. No. 1a, 56

Mao JW, Stein H, Du AD, Zhou TF, Mei YX, Li YF, Zang WS and Li JW. 2004. Molybdenite Re-Os precise dating for molybdenite from Cu-Au-Mo deposits in the Middle-Lower Reaches of Yangtze River Belt and its implications for mineralization. Acta Geologica Sinica, 78(1): 121-131 (in Chinese with English abstract)

Mao JW, Xie GQ, Duan C, Pirajno F, Ishiyama D and Chen YC. 2011. A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, eastern China. Ore Geology Reviews, 43(1): 294-314

McDougall I and Harrison TM. 1988. Geochronology and Thermochronology by the40Ar-39Ar Method. London/New York: Oxford University Press, 1-212

Pan YM and Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: Intrusion- and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 15(4): 177-242

Qi L, Zhou MF, Gao JF and Zhao Z. 2010. An improved Carius tube technique for determination of low concentrations of Re and Os in pyrites. Journal of Analytical Atomic Spectrometry, 25(4): 585-589

Qi L, Gao JF, Zhou MF and Hu J. 2013. The design of Re-usable carius tubes for the determination of rhenium, osmium and platinum-group elements in geological samples. Geostandards and Geoanalytical Research, 37(3): 345-351

Ren QJ, Qiu JS, Xu ZW, Zhang ZZ, Fang CQ and Yang CR. 1991. Formation conditions of the mineralized Stock in the Shaxi porphyry copper (gold) deposit, Anhui Province. Mineral Deposit, 10(3): 232-242 (in Chinese with English abstract)

Shi DN, Lü QT, Xu WY, Yan JY, Zhou JH, Dong SW and Chang YF. 2012. Crustal structures beneath the Mid-Lower Yangtze metallogenic belt and its adjacent regions in eastern China: Evidences from P-wave receiver function imaging for a MASH metallization process? Acta Geologica Sinica, 86(3): 389-399 (in Chinese with English abstract)

Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plešovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35

Stacey JS and Kramers JD. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett., 26(2): 207-221

Sun WD, Ling MX, Yang XY, Fan WM, Ding X and Liang HY. 2010. Ridge subduction and porphyry copper-gold mineralization: An overview. Science in China (Series D), 53(4): 475-484

Tang YC, Wu YC, Chu GZ, Xing FM, Wang YM, Cao FY and Chang YF. 1998. Geology of Copper-gold Polymetallic Deposits in the along-Changjiang Area of Anhui Province. Beijing: Geological Publishing House, 1-349 (in Chinese)

Wang LB, Ji KJ and Chen D. 1997. Re-Os isotope ages of molybdenite from the Anjishan copper deposit and the Tongshan copper molybdenum deposit and their implications. Acta Petrologica et Mineralogica, 16(2): 154-159 (in Chinese with English abstract)

Wang Q, Zhao ZH, Xiong XL and Xu JF. 2001. Melting of the underplated basaltic lower crust: Evidence from the Shaxi sodic quartz diorite-porphyrites, Anhui Province, China. Geochimica, 30(4): 353-362 (in Chinese with English abstract)

Wang Q, Xu JF, Zhao ZH, Xiong XL and Bao ZW. 2003. Petrogenesis of the Mesozoic intrusive rocks in the Tongling area, Anhui Province, China and their constraint on geodynamic process. Science in China (Series D), 46(8): 801-815

Wang Q, Xu JF, Jian P, Bao ZW, Zhao ZH, Li CF, Xiong XL and Ma JL. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1): 119-144

Wang SW, Zhou TF, Yuan F, Fan Y and Lü YZ. 2011. Geochronology and geochemical characteristics of the Shujiaidian intrusion in Tongling, China. Acta Geologica Sinica, 85(5): 849-861 (in Chinese with English abstract)

Wang SW, Zhou TF, Yuan F, Fan Y, Cao XS and Wang B. 2012. Re-Os and40Ar/39Ar dating of the Shujiadian copper deposit in Tongling, China: Implications for regional metallogenesis. Acta Petrologica Sinica, 28(10): 3170-3180 (in Chinese with English abstract)

Wang YB, Liu DY, Meng YF, Zeng PS, Yang ZS and Tian SH. 2004. SHRIMP U-Pb geochronology of the Xinqiao Cu-S-Fe-Au deposit in the Tongling ore district, Anhui. Geology in China, 31(2): 169-173 (in Chinese with English abstract)

Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC and SpiegelW. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19(1): 1-23

Wu CL, Gao QM, Guo HP, Guo XY, Liu LG, Hao YH, Lei M and Qin HP. 2010. Petrogenesis of the intermediate-acid intrusive rocks and zircon SHRIMP dating in Tongling, Anhui, China. Acta Petrologica Sinica, 26(9): 2630-2652 (in Chinese with English abstract)

Wu YC, Cao FY and Chang YF. 1999. A preliminary study on the deep-seated structural-magmatic control over the metallogenic system around the Yangtze River Reaches in Anhui Province. Earth Science Frontier, 6(2): 285-296 (in Chinese with English abstract)

Xie GQ, Mao JW, Li RL, Zhang ZS, Zhao WC, Qu WJ, Zhao CS and Wei SK. 2006. Metallogenic epoch and geodynamic framework of Cu-Au-Mo-(W) deposits in Southeastern Hubei Province: Constraints from Re-Os molybdenite ages. Mineral Deposits, 25(01): 43-52 (in Chinese with English abstract)

Xing FM and Xu X. 1996. High-potassium calc-alkaline intrusive rocks in Tongling area, Anhui Province. Geochimica, 25(1): 29-38 (in Chinese with English abstract)

Xu WY, Fu B, Ren QJ, Hu WX and Xu ZW. 1997. Size statistics of plagioclase phenocrysts in mineralized and barren porphyries in Shaxi porphyry copper gold deposit, Anhui Province and its significance for studying magma crystallization kinetics and ore forming process. Acta Petrologica Sinica, 13(2): 180-188 (in Chinese with English Abstract)

Xu WY, Xu ZW, Gu LX, Ren QJ, Fu B and Niu CY. 1999. Heat evolution from intrusion to mineralization in Shaxi porphyry copper (gold) deposits, Anhui Province. Geological Review, 45(4): 361-366 (in Chinese with English abstract)

Xu XC, Bai RY, Xie QQ, Lou JW, Zhang ZZ, Liu QN and Chen LW. 2012. Re-understanding of the geological and geochemical characteristics of the Mesozoic intrusive rocks from Tongling area of Anhui Province, and discussions on their genesis. Acta Petrologica Sinica, 20(10): 3139-3169 (in Chinese with English abstract)

Xu ZW, Xu WY, Qiu JS, Fu B and Niu CY. 2000. An investigation of the age and geological-geochemical characteristics of quartz diorite porphyry in Shaxi porphyry copper (gold) deposit. Geology and Prospecting, 36(4): 36-40 (in Chinese with English abstract)

Yang RY, Ren QJ, Xu ZW, Sun YD, Guo GZ and Qiu JS. 1993. The magma source of Bajiatan volcanic-intrusive complex in the Lujiang-Zhongyang area, Anhui Province. Geochimica, (2): 197-206 (in Chinese with English abstract)

Yang XN, Xu ZW, Lu XC, Jiang SY, Ling HF, Liu LG and Chen DY. 2011. Porphyry and skarn Au-Cu deposits in the Shizishan orefield, Tongling, East China, U-Pb dating and in-situ Hf isotope analysis of zircons and petrogenesis of associated granitoids. Ore Geology Reviews, 43: 182-193

Yang XY. 2006.40Ar-39Ar dating and geological significance on the Cu-bearing porpyrite of Shaxi from southern Tan-Lu fault belt. Journal of Mineralogy and Petrology, 26(2): 52-56 (in Chinese with English abstract)

Yuan F, Zhou TF, Fan F, Lu SM, Qian CC, Zhang LJ, Duan C and Tang MH. 2008. Source, evolution and tectonic setting of Mesozoic volcanic rocks in Luzong basin, Anhui Province. Acta Petrologica Sinica, 24(8): 1691-1702 (in Chinese with English abstract)

Yuan F, Zhou TF, Liu J, Fan F, Cooke DR, Jowitt SM. 2011. Petrogenesis of volcanic and intrusive rocks of the Zhuanqiao stage, Luzong Basin, Yangtze metallogenic belt, East China: Implications for ore deposition. International Geology Review, 53(5-6): 526-541

Yuan F, Zhou TF, Wang SW, Fan Y, Tang C, Zhang QM, Yu CH and Shi C. 2012. Characteristics of alteration and mineralization of the Shaxi porphyry copper deposit, Luzong area, Anhui Province. Acta Petrologica Sinica, 28(10): 3099-3112 (in Chinese with English abstract)

Zhang D, Wu GG, Di YJ, Zang WS, Shao YJ, Yu XQ, Zhang XX and Wang QF. 2006. Emplacement dynamics of Fenghuangshan pluton (Tongling, Anhui Province): Constraints from U-Pb SHRIMP dating of zircons and structural deformation. Earth Science, 31(6): 823-830 (in Chinese with English abstract)

Zhang LJ, Zhou TF, Fan Y and Yuan F. 2008. SHRIMP U-Pb zircon dating of Yueshan intrusion in the Yueshan ore field, Anhui, and its significance. Acta Petrologica Sinica, 24(8): 1725-1732 (in Chinese with English abstract)

Zhao ZH and Tu GZ. 2003. Superlarge Deposits in China. Beijing: Science Press, 1-631 (in Chinese)

Zhou TF, Yue SC and Yuan F. 2005. Lithogenesis of Diorites and Copper, Gold Mineralization in Yueshan Orefield, Anhui Province. Beijing: Geological Publishing House, 1-148 (in Chinese)

Zhou TF, Yuan F, Yue SC, Liu XD, Zhang X and Fan Y. 2007. Geochemistry and evolution of ore-forming fluids of the Yueshan Cu-Au skarn- and vein-type deposits, Anhui Province, South China. Ore Geology Reviews, 31(1-4): 279-303

Zhou TF, Fan Y and Yuan F. 2008. Advances on petrogensis and metallogeny study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area. Acta Petrologica Sinica, 24(8): 1665-1678 (in Chinese with English abstract)

Zhou TF, Fan Y, Yuan, F, Zhang LJ, Ma L, Qian B and Xie J. 2011. Petrogensis and metallogeny study of the volcanic basins in the Middle and Lower Yangtze Metallogenic Belt. Acta Geologica Sinica, 85(5): 712-730 (in Chinese with English abstract)

附中文参考文献

曹毅, 杜杨松, 蔡春麟, 秦新龙, 李顺庭, 向文帅. 2008. 安徽庐枞地区中生代A型花岗岩类及其岩石包体: 在碰撞后岩浆演化过程中的意义.高校地质学报, 14(4): 565-576

常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铜铁成矿带. 北京: 地质出版社, 1-234

陈江峰, 谢智, 张巽, 周泰禧. 2001. 安徽的地壳演化: Sr-Nd同位素证据. 安徽地质, 11(2): 123-130

储国正. 2003. 铜陵狮子山铜金矿田成矿系统及其找矿意义. 博士学位论文. 北京: 中国地质大学, 1-141

董树文, 高锐, 吕庆田, 张季生, 张荣华, 薛怀民, 吴才来, 卢占武, 马立成. 2009. 庐江-枞阳矿集区深部结构与成矿. 地球学报, 30(3): 279-284

董树文, 项怀顺, 高锐, 吕庆田, 李建设, 战双庆, 卢占武, 马立成. 2010. 长江中下游庐江-枞阳火山岩矿集区深部结构与成矿作用. 岩石学报, 26(9): 2529-2542

杜建国, 戴圣潜, 莫宣学, 邓晋福, 许卫. 2003. 安徽沿江地区燕山期火成岩成岩成矿地质背景. 地学前缘, 10(4): 551-561

范裕, 周涛发, 袁峰, 陆三明, David C. 2008. 安徽庐江-枞阳地区A型花岗岩的LA-ICP-MS定年及其地质意义. 岩石学报, 24(8): 1715-1725

傅斌, 任启江, 邢凤鸣, 徐兆文, 胡文瑄, 郑永飞. 1997. 安徽沙溪含铜斑岩40Ar-39Ar定年及其地质意义. 地质论评, 43(3): 310-316

郭维民, 陆建军, 蒋少涌, 章荣清, 招湛杰. 2013. 安徽铜陵狮子山矿田岩浆岩年代学、Hf同位素、地球化学及岩石成因. 中国科学(地球科学), 43(8): 1268-1286

蒋少涌, 李亮, 朱碧, 丁昕, 姜耀辉, 顾连兴, 倪培. 2008. 江西武山铜矿区花岗闪长斑岩的地球化学和Sr-Nd-Hf同位素组成及成因探讨. 岩石学报, 24(8): 1679-1690

蒋少涌, 孙岩, 孙明志, 边立曾, 熊永根, 杨水源, 曹钟清, 吴亚民. 2010. 长江中下游成矿带九瑞矿集区叠合断裂系统和叠加成矿作用. 岩石学报, 26(9): 2615-2625

赖小东, 杨晓勇, 孙卫东, 曹晓生. 2012. 铜陵舒家店岩体年代学、岩石地球化学特征及成矿意义. 地质学报, 86(3): 470-485

刘珺, 周涛发, 袁峰, 范裕, 吴明安, 陆三明, 钱存超. 2007. 安徽庐枞盆地中巴家滩岩体的岩石地球化学特征及成因. 岩石学报, 23(10): 2615-2622

刘延年, 钱应敏. 2001. 鄂东封三洞铜(金)矿床周边外围金银及金银多金属矿找矿新成果综述. 湖北地矿, 15(4): 53-58

楼亚儿, 杜杨松. 2006. 安徽繁昌中生代侵入岩的特征和锆石SHRIMP测年. 地球科学, 35(4): 359-366

陆三明. 2007. 安徽铜陵狮子山铜金矿田岩浆作用与流体成矿. 博士学位论文. 合肥: 合肥工业大学, 1-144

吕庆田, 侯增谦, 杨竹森, 史大年. 2004. 长江中下游地区的底侵作用及动力学演化模式: 来自地球物理资料的约束. 中国科学(D辑), 34(9): 783-794

毛景文,Stein H,杜安道,周涛发,梅燕雄,李永峰,藏文栓,李进文. 2004. 长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示. 地质学报, 78 (1): 121-131

任启江, 邱检生, 徐兆文, 张重泽, 方长泉, 杨荣勇. 1991. 安徽沙溪斑岩铜(金)矿床矿化小岩体的形成条件. 矿床地质, 10(3): 232-242

史大年, 吕庆田, 徐文艺, 严加永, 赵金花, 董树文, 常印佛. 2012. 长江中下游成矿带及邻区地壳结构——MASH成矿过程的P波接收函数成像证据? 地质学报, 86(3): 389-399

唐永成, 吴言昌, 储国正, 邢凤鸣, 王永敏, 曹奋扬, 常印佛. 1998. 安徽沿江地区铜金多金属矿床地质. 北京: 地质出版社, 1-349

王立本, 季克俭, 陈东. 1997. 安基山和铜山铜(钼)矿床中辉钼矿的铼-锇同位素年龄及其意义. 岩石矿物学杂志, 16(2): 154-159

王强, 赵振华, 熊小林, 许继锋. 2001. 底侵玄武质下地壳的熔融: 来自安徽沙溪adakite质富钠石英闪长玢岩的证据. 地球化学, 30(4): 353-362

王强, 许继峰, 赵振华, 熊小林, 包志伟. 2003. 安徽铜陵地区燕山期侵入岩的成因及其对深部动力学过程的制约. 中国科学(D辑), 33(4): 323-334

王世伟, 周涛发, 袁峰, 范裕, 吕玉琢. 2011. 铜陵舒家店岩体的年代学和地球化学特征研究. 地质学报, 85(5): 849-861

王世伟, 周涛发, 袁峰, 范裕, 曹晓生, 王彪. 2012. 铜陵舒家店斑岩铜矿成矿年代学研究及其成矿意义. 岩石学报, 28(10): 3170-3180

王彦斌, 刘敦一, 蒙义峰, 曾普胜, 杨竹森, 田世洪. 2004. 安徽铜陵新桥铜-硫-铁-金矿床中石英闪长岩和辉绿岩锆石SHRIMP年代学及其意义. 中国地质, 31(2): 169-173

吴才来, 高前明, 国和平, 郭祥炎, 刘良根, 郜源红, 雷敏, 秦海鹏. 2010. 铜陵中酸性侵入岩成因及锆石SHRIMP定年. 岩石学报, 26(9): 2630-2652

吴言昌, 曹奋扬, 常印佛. 1999. 初论安徽沿江地区成矿系统的深部构造-岩浆控制. 地学前缘, 6(2): 285-296

谢桂青, 毛景文, 李瑞玲, 张祖送, 赵维超, 屈文俊, 赵财胜, 魏世昆. 2006. 鄂东南地区Cu-Au-Mo-(W)矿床的成矿时代及其成矿地球动力学背景探讨: 辉钼矿Re-Os同位素年龄. 矿床地质, 25(1): 43-52

邢凤鸣, 徐祥. 1996. 铜陵地区高钾钙碱系列侵入岩. 地球化学, 25(1): 29-38

徐文艺, 傅斌, 任启江, 胡文暄, 徐兆文. 1997. 安徽沙溪含和不含铜(金)矿斑岩斜长石斑晶粒度统计及其岩浆结晶动力学和成矿意义. 岩石学报, 13(2): 180-188

徐文艺, 徐兆文, 顾连兴, 任启江, 傅斌, 牛翠祎. 1999. 安徽沙溪斑岩铜(金)矿床成岩成矿热历史探讨. 地质评论, 45(4): 361-366

徐晓春, 白如玉, 谢巧勤, 楼金伟, 张赞赞, 刘启能, 陈莉薇. 2012. 安徽铜陵中生代侵入岩地质地球化学特征再认识及成因讨论. 岩石学报, 28(10): 3139-3169

徐兆文, 徐文艺, 邱检生, 傅斌, 牛翠祎. 2000. 与沙溪斑岩铜(金)矿床有关的石英闪长斑岩地质地球化学特征及形成时代研究. 地质与勘探, 36(4): 36-40

杨荣勇, 任启江, 徐兆文, 孙冶东, 郭国章, 邱检生. 1993. 安徽庐枞地区巴家滩火山-侵入体的岩浆来源. 地球化学, (2): 197-206

杨晓勇. 2006. 郯庐断裂带南段沙溪含铜斑岩体的40Ar-39Ar年代学研究及意义. 矿物岩石, 26(2): 52-56

袁峰, 周涛发, 范裕, 陆三明, 钱存超, 张乐骏, 段超, 唐敏慧. 2008. 庐枞盆地中生代火山岩的起源、演化及形成背景. 岩石学报, 24(8): 1691-1702

袁峰, 周涛发, 王世伟, 范裕, 汤诚, 张千明, 俞沧海, 石诚. 2012. 安徽庐枞沙溪斑岩铜矿蚀变及矿化特征研究. 岩石学报, 28(10): 3099-3112

张达, 吴淦国, 狄永军, 臧文拴, 邵拥军, 余心起, 张祥信, 汪群峰. 2006. 铜陵凤凰山岩体SHRIMP锆石U-Pb年龄与构造变形及其对岩体侵位动力学背景的制约. 地球科学, 31(6): 823-830

张乐骏, 周涛发, 范裕, 袁峰. 2008. 安徽月山岩体的锆石SHRIMP U-Pb定年及其意义. 岩石学报, 24(8): 1725-1732

赵振华, 涂光炽. 2003. 中国超大型矿床: II. 北京:科学出版社, 1-631

周涛发, 岳书仓, 袁峰. 2005. 安徽月山矿田成岩成矿作用. 北京: 地质出版社, 1-148

周涛发, 范裕, 袁峰. 2008. 长江中下游成矿带成岩成矿作用研究进展. 岩石学报, 24(8): 1665-1678

周涛发, 范裕, 袁峰, 张乐骏, 马良, 钱兵, 谢杰. 2011. 长江中下游成矿带火山岩盆地的成岩成矿作用. 地质学报, 85(5): 712-730

猜你喜欢

长玢岩沙溪黑云母
绘画篇
内蒙古银宫山地区闪长玢岩脉锆石U-Pb 同位素年代学、地球化学特征及与铀矿化关系研究
花岗岩中黑云母矿物学特征及其地质意义
黑云母的标型特征简述
黑云母温压计在岩浆系统中的适用性研究
NE向晚期闪长玢岩脉破矿规律研究:以对I-5号矿体的影响为例
江西省玉山县下仓金矿找矿前景浅析
山东沂南金矿铜井矿区矿液活动中心控矿特征
红石泉伟晶状白岗岩型铀矿黑云母特征及成矿作用*
TRMM降水数据在沙溪流域的精度验证