APP下载

乳腺癌辅助放疗对抗肿瘤免疫影响的研究进展

2014-01-26综述审校

中国癌症杂志 2014年5期
关键词:免疫系统抗原机体

综述 审校

复旦大学附属肿瘤医院放疗科,复旦大学上海医学院肿瘤学系,上海 200032

乳腺癌辅助放疗对抗肿瘤免疫影响的研究进展

王小方综述郭小毛审校

复旦大学附属肿瘤医院放疗科,复旦大学上海医学院肿瘤学系,上海 200032

免疫是机体的基本防御屏障,与乳腺癌的发生、发展、治疗及预后密切相关。辅助放疗是乳腺癌综合治疗的重要组成部分。传统观点认为放疗可直接破坏机体免疫细胞,进而抑制机体免疫的抗肿瘤效果。而近期研究表明,放疗可刺激免疫系统产生一系列积极反应,有利于肿瘤杀伤过程中抗原的加工、提呈、识别及肿瘤的最终杀伤。临床方面,放疗联合多种免疫靶向治疗相继进入临床试验阶段。本文将对乳腺癌放疗对抗肿瘤免疫影响的研究发展及现状进行介绍。

乳腺癌;放疗;免疫

1 乳腺癌与免疫

2011年,Schreiber等[1]发表在Science中的一篇文章提出,肿瘤的发生是肿瘤生长及侵袭能力由弱到强,而机体免疫功能由活跃到沉默的一种此消彼长的过程,肿瘤的发生、发展、治疗、预后等均与机体免疫密切相关。乳腺癌作为一种实体肿瘤,其发展过程亦有此特点。同时,对乳腺癌患者的临床病理分析显示,肿瘤组织或淋巴结中一些抗肿瘤和促瘤因素的数量或比例改变,如滤泡状B细胞、Treg细胞数量及CD4+/CD8、TH2/ TH1的比例等,与肿瘤的分级、分期和患者的总生存率相关[2],进一步表明了乳腺癌与免疫的相关性。

经典的抗肿瘤免疫包括抗原的提呈、识别,效应细胞的活化和发挥免疫效应几个环节。但同时肿瘤细胞也通过多种方式免疫逃逸,如下调肿瘤抗原、削弱抗肿瘤免疫等。而放疗作为一种治疗手段,除直接杀灭肿瘤细胞外,还能一定程度影响免疫系统,进而影响抗肿瘤免疫进程,本文将从细胞及分子水平上综述放疗对乳腺癌抗肿瘤免疫的影响。

2 放射治疗对乳腺癌抗肿瘤免疫影响

2.1 放射对抗肿瘤免疫的促进作用

放射治疗运用电离射线杀灭肿瘤,与此同

时,电离射线也影响着免疫微环境,在免疫细胞的招募、肿瘤细胞的识别以及杀灭等多环节增强机体的抗肿瘤免疫,下文就放射线对抗肿瘤免疫各阶段的影响加以阐述。

放疗对免疫细胞的影响:传统观念认为放疗是免疫抑制性的,因其造成了免疫细胞的降低而抑制了机体的免疫功能。但近期研究发现,正是因为放疗可引起低淋巴血症,机体为恢复稳态而发生免疫细胞增殖,此杀灭、再生现象对消除因长期荷瘤而产生的无能T细胞有利[3]。且新增殖的细胞同时具备记忆细胞和效应细胞的特征,能引发更快速有效的抗瘤效应[4-6]。另有实验表明,低剂量放疗能降低Treg细胞的比例和数量,使免疫反应更容易被激发,使得低剂量放疗具有不同程度的免疫促进作用[7]。

免疫细胞的招募:免疫细胞随血液循环于全身,当局部炎性反应递质如细胞因子、淋巴细胞、黏附分子等增多时,淋巴细胞穿出血管在局部组织的浸润增多。体外实验表明,内皮细胞表面黏附分子如ICAM、E-选择素在放射后表达上调[8]。Wu等[9]的体内实验也证实了这一现象。同时,趋化因子CXCL16在放射后亦有增高,吸引表达CXCR6的CD8+T细胞[10]。此外,射线引起的DNA损伤可直接或间接地引起核转录因子-κB(nuclear factor Kappa B,NF-кB)活化,导致直接调控参与促炎免疫反应的分子如肿瘤坏死因子(tumor necrosis factor,TNF)的表达[11]。此类炎性反应递质的增多进一步引起局部抗肿瘤免疫的增强。

免疫的诱发阶段:放疗可引起细胞生命相关物质如染色体、DNA、蛋白质的损伤和破坏,导致细胞死亡。死亡的细胞释放的细胞碎片于机体免疫系统形成一种“危险信号”,即损伤相关分子模式(damage associated molecular patterns,DAMP),可被固有免疫细胞如巨噬细胞、树突状细胞等通过细胞表面模式识别受体(pattern recognization receptor,PRR)识别,启动机体固有及适应性免疫[12]。近期研究显示,放疗可引起乳腺癌细胞释放一种重要的DAMP—HMGB-1,该因子能与DC表面PRRTLR-4结合启动免疫反应[13]。放疗作用于钙网蛋白和ATP,产生类似的作用。钙网蛋白被称为“eat me”信号,放疗后迅速向细胞表面移动[14];ATP在放疗后也从细胞内快速释放[15],二者均可与DC表面PRR结合引发后续免疫反应。

抗原提呈和识别阶段:MHC-I分子表达缺失、抗原提呈缺陷是常见的肿瘤免疫逃逸机制。体外实验表明,放射能引起乳腺癌细胞MHC-I表达增高[16]及抗原肽加工增强[17],在一定程度上修复了这种免疫逃逸。适应性免疫细胞的激活具有双信号的特点,放疗使B细胞、DC细胞表面共刺激分子CD80的表达增强[18],致T细胞活化第二信号CD28-CD80增强,由此增强T细胞识别及活化过程的能力。

肿瘤杀灭阶段:抗肿瘤免疫中肿瘤细胞的杀伤多依赖于CD8+T细胞和NK细胞。肿瘤细胞受到照射后表面Fas表达增高[19],Fas作为一种凋亡受体与CD8+T细胞和NK细胞表面Fas-L或TNF-a、TRAIL结合,启动凋亡程序,诱导凋亡。放射还可引起NK细胞激活型受体NKG2D表达增多,促进NK/T细胞的活化[20]。此外,放射后死亡的细胞可释放热休克蛋白70,可将缺陷蛋白提呈于细胞表面由NK细胞识别并杀伤[21]。

2.2 放射对抗肿瘤免疫的抑制作用

大多数的肿瘤治疗方式都有不同程度的免疫抑制作用。

对免疫细胞的影响:在放射治疗过程中,机体免疫系统不可避免地接受到一定程度的辐射,造成免疫细胞的损伤破坏;另外,骨髓组织对射线具有较高的敏感性,放射治疗可抑制骨髓起源细胞的产生,其中包括了原始免疫细胞[22]。

放疗后绝大多数固有免疫细胞、适应性免疫细胞计数即刻下降。放疗后NK细胞表现出低活力,持续数周逐渐恢复[23]。其他一些固有免疫细胞如单核细胞、巨噬细胞等计数均有不

同程度的下降,多在6个月之内得以恢复[24]。放疗后,乳腺癌患者CD8+T、CD4+T细胞增殖及信号转导受到抑制[25],B细胞分泌功能降低,部分免疫球蛋白在1年之后仍低于治疗前水平[26]。有报道显示,一些患者淋巴细胞的恢复长达10年[27]。Treg则显示出一定的放射抵抗性,局部放疗后百分比增加[28]。

生物活性因子的改变:Sekar等[29]研究发现,放化疗后凋亡的乳腺癌细胞能诱导DC分泌IL-27,诱导CD39+CD69+Treg生成,抑制了CTL的细胞毒性。同时,放疗后侵袭相关性的趋化因子如SDF-1[2]、CXCL8[30]表达增多;抑制性细胞因子如TGF-分泌增加,多数抗肿瘤细胞因子如IFN-r,IL-2,IL-4分泌减少[23]。此外,放疗后在环氧酶催化下前列腺素合成增多[31],其中A2、D2、E2可抑制淋巴细胞对抗原的反应,D2、E2抑制NK活力[32],由此可部分解释放疗后免疫细胞的减少。

3 影响乳腺癌抗肿瘤免疫的多种放射相关因素

3.1 放射野对免疫的影响

Standish等[23]在临床研究时发现,放射野增大时,免疫细胞的改变更为突出,可能与暴露于放射区域的淋巴管增多有关。

3.2 分割方式及剂量的影响

Lee等[33]发现与常规放疗相比,单次大剂量放疗增加了病灶中T细胞的浸润。这可能与在一定范围内,随放射剂量增大,多种抗肿瘤免疫相关因子,如MHC-I[17]、CXCL16[10]等表达增多有关。Dewan等[34]利用乳腺癌模型进行相同的研究发现不同的放射方式有相似的局部肿瘤控制率,其中分割治疗显著增加了“旁观者效应”,更有利于远处肿瘤的控制,但治疗方式对免疫的影响有待进一步证实。

3.3 化放疗序贯治疗对免疫的影响

化放疗序贯治疗是乳腺癌最常采用的辅助治疗方式,但在一定程度上会出现免疫毒性的叠加。总体来说,序贯治疗对免疫系统的抑制强于单纯放疗[25],但二者又各有侧重。Kang等[35]对早期乳腺癌(Ⅰ~Ⅲ期)患者进行研究,发现了序贯治疗组更趋向于出现Th1型细胞因子抑制,而单纯放疗组则为Th2型。两组免疫恢复情况也不尽相同,前组显著延迟了细胞因子IL-2和CD4+T细胞亚群的恢复,且对NK细胞产生了短暂而明显的抑制;而后组对IL-4的恢复延迟比较明显。此外,在对不同乳腺癌分期与辅助治疗后免疫抑制分析时,Ⅰ~Ⅱ期与Ⅲ期未发现有明显差异。

4 放疗在乳腺癌抗肿瘤免疫中的临床应用进展

放疗影响着机体抗肿瘤免疫的进程,其或多或少的出现了免疫系统的抑制或损伤,为达到放疗后最大抗肿瘤效应,我们采用放疗与免疫治疗相结合修复这些损伤。

Treg是一种免疫抑制细胞,对放疗相对抵抗。该细胞活化后持续表达CTLA-4,与B7配接后传递抑制信号。抗CTLA-4单抗可阻断Treg细胞的抑制作用。乳腺癌动物模型中放疗+CTLA-4是一个成功的例子,联合治疗不仅能显著增加肿瘤的局部控制率,优化分割剂量后联合治疗还能最大限度地达到“旁观者效应”[34],对远处肿瘤控制具有积极意义。放疗联合其他免疫治疗方式,如体外激活DC细胞回输荷瘤者体内[36]、应用诸如CpG寡脱氧核苷酸的TLR激动剂[37]、TGF-抑制剂[38]、抗CD137、抗CD40、OX40、抗PD-1[39]等生物制剂在体外或动物模型中取得了良好的抗肿瘤效果。多种放疗联合免疫治疗相继进入临床试验阶段,Gulley等[40]对早期前列腺癌患者进行Ⅱ期临床试验,分为放疗+PSA疫苗联合组(17例)与单纯放疗组(9例),联合组辅以粒细胞集落刺激因子(GM-CSF)及低剂量白介素-2(IL-2)。试验表明,联合组76%患者出现3倍以上的PSA特异性免疫应答,并出现新的前列腺相关抗原免疫应答,而单纯放疗组未出现相似改变。在联合治疗组20个月、单纯放疗组25.1个月的中位随访时间中,分别有2例发生复发。此次临床试验证实了免疫制剂与放疗联合应用的可行性,但仍需大样本的随机试验证实机体免疫学改变能否转化为患者的生存获益。此外,放疗+自体DC细胞瘤内注射[41-42]、放疗+抗CTLA-4抗体(Ipilimuma)[43]等Ⅰ/Ⅱ期临床试验都取得了令人

满意的结果。但免疫系统复杂而精细,在人体中治疗价值有待进一步探索。

5 放疗在抗肿瘤免疫中的前景

机体免疫与肿瘤发生、发展、治疗、预后密不可分,放射治疗影响着机体抗肿瘤免疫的进程,目前研究主要集中于联合免疫制剂增强放射后抗肿瘤免疫效果,并且在动物实验中取得一定效果。但免疫系统复杂而精细,如何寻找到放疗抑制免疫的上游调控点,消除放疗对抗肿瘤免疫的不利影响,还有待我们进一步探索。

[1]SCHREIBER R D, OLD L J, SMYTH M J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion [J]. Science, 2011, 331(6024): 1565-1570.

[2]SHIAO S L. COUSSENS L M. The tumor-immune microenvironment and response to radiation therapy [J]. J Mammary Gland Biol Neoplasia, 2010, 15(4): 411-421.

[3]FINKE J H, ZEA A H, STANLEY J, et al. Loss of T-cell receptor zeta chain and p56lck in T-cells infiltrating human renal cell carcinoma [J]. Cancer Res, 1993, 53(23): 5613-5616.

[4]CHO B K, RAO B P, GE Q, et al. Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells[J]. J Exp Med, 2000, 192(4): 549-556.

[5]MIN B, PAUL W E. Endogenous proliferation: burst-like CD4 T cell proliferation in lymphopenic settings [J]. Semin Immunol, 2005, 17(3): 201-207.

[6]MAINE G N, MULE J J. Making room for T cells [J]. J Clin Invest, 2002, 110(2): 157-159.

[7]LIU R, XIONG S, ZHANG L, et al. Enhancement of antitumor immunity by low-dose total body irradiationis associated with selectively decreasing the proportion and number of T regulatory cells [J]. Cell Mol Immunol, 2010, 7(2): 157-162.

[8]HALLAHAN D, KUCHIBHOTLA J, WYBLE C. Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium [J]. Cancer Res, 1996, 56(22): 5150-5155.

[9]WU N Z, ROSS B A, GULLEDGE C, et al. Differences in leucocyte-endothelium interactions between normal and adenocarcinoma bearing tissues in response to radiation [J]. Br J Cancer, 1994, 69(5): 883-889.

[10]MATSUMURA S, WANG B, KAWASHIMA N, et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells [J]. J Immunol, 2008, 181(5): 3099-3107.

[11]LI N, KARIN M. Ionizing radiation and short wave length UV activate NF-kappaB through two distinct mechanisms [J]. Proc Natl Acad Sci U S A, 1998, 95(22): 13012-13017.

[12]SCHAUE D, XIE M W, RATIKAN J A, et al. Regulatory T cells in radiotherapeutic responses [J]. Front Oncol, 2012, 2: 90.

[13]APETOH L, GHIRINGHELLI F, TESNIERE A, et al. Tolllike receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy [J]. Nat Med, 2007, 13(9): 1050-1059.

[14]OBEID M, TESNIERE A, GHIRINGHELLI F, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death [J]. Nat Med, 2007, 13(1): 54-61.

[15]GHIRINGHELLI F, APETOH L, TESNIERE A, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors [J]. Nat Med, 2009, 15(10): 1170-1178.

[16]WAN S, PESTKA S, JUBIN R G, et al. Chemotherapeutics and radiation stimulate MHC class I expression through elevated interferon-beta signaling in breast cancer cells [J]. PLoS One, 2012, 7(3): e32542.

[17]REITS E A, HODGE J W, HERBERTS C A, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy[J]. J Exp Med, 2006, 203(5): 1259-1271.

[18]TORIHATA H, ISHIKAWA F, OKADA Y, et al. Irradiation up-regulates CD80 expression through two different mechanisms in spleen B cells, B lymphoma cells, and dendritic cells [J]. Immunology, 2004, 112(2): 219-227.

[19]LUCE A, COURTIN A, LEVALOIS C, et al. Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells [J]. Carcinogenesis, 2009, 30(3): 432-439.

[20]KIM J Y, SON Y O, PARK S W, et al. Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation [J]. Exp Mol Med, 2006, 38(5): 474-484.

[21]GEHRMANN M, MARIENHAGEN J, EICHHOLTZ-WIRTH H, et al. Dual function of membrane-bound heat shock protein 70 (Hsp70), Bag-4, and Hsp40: protection against radiationinduced effects and target structure for natural killer cells[J]. Cell Death Differ, 2005, 12(1): 38-51.

[22]CASTANO A P, MROZ P, HAMBLIN M R. Photodynamic therapy and anti-tumour immunity [J]. Nat Rev Cancer, 2006, 6(7): 535-545.

[23]STANDISH L J, TORKELSON C, HAMILL F A, et al. Immune defects in breast cancer patients after radiotherapy [J]. J Soc Integr Oncol, 2008, 6(3): 110-121.

[24]WASSERMAN J, BLOMGREN H, PETRINI B, et al. Effect of radiation therapy and in vitro x-ray exposure on lymphocyte subpopulations and their functions [J]. Am J Clin Oncol,

1982, 5(2): 195-208.

[25]MOZAFFARI F, LINDEMALM C, CHOUDHURY A, et al. Systemic immune effects of adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide and/or radiotherapy in breast cancer: a longitudinal study [J]. Cancer Immunol Immunother, 2009, 58(1): 111-120.

[26]STRENDER L E, BLOMGREN H, WASSERMAN J, et al. Influence of adjuvant radiation therapy in breast cancer on PWM induced Ig-secretion by blood lymphocytes in vitro[J]. Anticancer Res, 1983, 3(1): 41-45.

[27]SHUKLA H S, HUGHES L E. WHITRHEAD R H, et al. Long-term follow-up of general immune competence in breast cancer. Ⅱ. Sequential pre- and post-treatment levels: a 10 year study [J]. Cancer Immunol Immunother, 1986, 21(1): 6-11.

[28]SCHAUE D, RATIKAN J A, IWAMOTO K S, et al. Maximizing tumor immunity with fractionated radiation [J]. Int J Radiat Oncol Biol Phys, 2012, 83(4): 1306-1310.

[29]SEKAR D, HAHN C, BRUNE B, et al. Apoptotic tumor cells induce IL-27 release from human DCs to activate Treg cells that express CD69 and attenuate cytotoxicity [J]. Eur J Immunol, 2012, 42(6): 1585-1598.

[30]SUN Z, ANDERSSON R. NF-kappaB activation and inhibition: a review [J]. Shock, 2002, 18(2): 99-106.

[31]JARSTRAND C, PETRINI B, WASSERMAN J, et al. Increased reduction of nitroblue tetrazolium by human blood monocytes following post-operative radiation therapy for breast cancer [J]. Anticancer Res, 1982, 2(4): 209-212.

[32]WASSERMAN J, HAMMARSTROM S, PETRINI B, et al. Effects of some prostaglandins and leukotrienes on lymphocytes, monocytes and their activity in vitro [J]. Int Arch Allergy Appl Immunol, 1987, 83(1): 39-43.

[33]LEE Y, AUH S L, WANG Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment [J]. Blood, 2009, 114(3): 589-595.

[34]DEWAN M Z, GALLOWAY A E, KAWASHIMA N, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody [J]. Clin Cancer Res, 2009, 15(17): 5379-5388.

[35]KANG D H, WEAVER M T, PARK N J, et al. Significant impairment in immune recovery after cancer treatment [J]. Nurs Res, 2009, 58(2): 105-114.

[36]CHAKRABORTY M, ABRAMS S I, COLEMAN C N, et al. External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing [J]. Cancer Res, 2004, 64(12): 4328-4337.

[37]MASON K A, ARIGA H, NEAL R, et al. Targeting toll-like receptor 9 with CpG oligodeoxynucleotides enhances tumor response to fractionated radiotherapy [J]. Clin Cancer Res, 2005, 11(1): 361-369.

[38]BOUQUET F, PAL A, PILONES K A, et al. TGFβ1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo [J]. Clin Cancer Res, 2011, 17(21): 6754-6765.

[39]VERBRUGGE I, HAGEKYRIAKOU J, SHARP L L, et al. Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory antibodies[J]. Cancer Res, 2012, 72(13): 3163-3174.

[40]GULLEY J L, ARLEN P M, BASTIAN N, et al. Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer [J]. Clin Cancer Res, 2005, 11(9): 3353-3362.

[41]CHI K H, LIU S J, LI C P, et al. Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma [J]. J Immunother, 2005, 28(2): 129-135.

[42]FINKELSTEIN S E, ICLOZAN C, BUI M M, et al. Combination of external beam radiotherapy (EBRT) with intratumoral injection of dendritic cells as neo-adjuvant treatment of high-risk soft tissue sarcoma patients [J]. Int J Radiat Oncol Biol Phys, 2012, 82(2): 924-932.

[43]SLOVIN S FM HAMID O, TEJWANI S, et al. Ipilimumab (IPI) in metastatic castrate-resistant prostate cancer (mCRPC): Results from an open-label, multicenter phaseⅠ/Ⅱ study[J]. J Clin Oncol, 2012, 30(5 Suppl): 25.

Progression of adjuvant radiotherapy upon breast cancer immunity

WANG Xiao-fang, GUO Xiaomao (Department of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China)

Immunity is the basic defense barrier for body, and also closely related to the development, progression, treatment and prognosis of breast cancer. Adjuvant radiotherapy plays an important role in the multidisciplinary treatment of breast cancer. It has long been believed that radiotherapy was immunosuppressive because it could destroy the body’s immune cells directly. While recent studies have shown that radiotherapy can stimulate the host immune system in the antitumor process, including antigen processing, presentation, recognition, and eventually tumor-cell killing. In the clinical aspect, a variety of immune targeted therapies, combined with radiotherapy, have entered clinical trials. The article reviewed research progress and status of the in fl uence of breast cancer adjuvant radiotherapy on antitumor immunity.

Breast cancer; Radiotherapy; Immunity

10.3969/j.issn.1007-3969.2014.05.012

R737.9

A

1007-3639(2014)05-0392-05

2013-10-30

2014-02-19)

国家自然科学基金(No:81372430)。

郭小毛 E-mail:guoxm1800@126.com

猜你喜欢

免疫系统抗原机体
行为免疫系统对个体就医行为倾向的影响*
一类具有抗原性的肿瘤-免疫系统的定性分析
Ω-3补充剂或能有效减缓机体衰老
负载抗原DC联合CIK对肝癌免疫微环境的影响
邓俊峰作品选
Staying healthy
大型卧浇机体下芯研箱定位工艺探讨
前列腺特异性膜抗原为靶标的放射免疫治疗进展
APOBEC-3F和APOBEC-3G与乙肝核心抗原的相互作用研究
盐酸克伦特罗人工抗原的制备与鉴定