APP下载

LiSiPON固态薄膜电解质的结构和性能分析

2013-11-01李国珍李德军

关键词:全固态固态锂离子

李国珍,董 磊,任 伟,李德军

(天津师范大学物理与材料科学学院,天津300387)

随着电子器件不断向微型化、轻量化的方向发展,生产与之相匹配的微小尺寸化学电源成为迫切要求,特别是适用于微电子机械系统(microelectronic mechanical systems,MEMS)发展的微电池已引起人们的重视.目前已开展研究的微电池系列有微型锌镍电池、微型全固态锂电池、微型太阳电池、微型温差电池和微型燃料电池等.因为锂是最轻的金属元素,同时电负性最大,可以提供高比能量,因此,微型全固态锂电池被认为是最合适的电源之一.目前,已有许多用于全固态薄膜锂电池的电极薄膜材料,但有关电解质薄膜的研究明显落后于电极薄膜.研制高性能、低成本的电解质薄膜对开发全固态薄膜电池具有非常重要的意义[1-7].

近年来,由于具有比能量高、循环性能好及安全性高等优点,且能够适应能源微型化、轻量化的要求,全固体薄膜锂电池逐渐成为研究热点.美国橡树岭国家实验室(ORNL)在1992年以Li3PO4为靶材,在N2气氛中用磁控溅射制备出一种具有良好电化学性能的无机电解质薄膜LiPON(Lithium Phosphorous Oxynitride),其室温电导率达 2×10-6S/cm[9-11].韩国 Lee等[14]以(1-x)Li3PO4·x Li2SiO3为靶材,在N2气氛下采用射频磁控溅射法制备了LiSiPON氧氮化物薄膜电解质,研究发现,随着Si含量增加,薄膜离子电导率逐渐升高,最高达1.24×10-5S/cm.由于采用离子束辅助沉积可以获得致密均匀的薄膜,且工艺简单,易控制,本研究采用离子束辅助沉积技术制备LiSiPON薄膜,以期获得均匀致密、含氮量高的电解质薄膜.

1 实验

LiSiPON薄膜采用中国科学院沈阳科学仪器厂制造的FJL560CIZ型超高真空磁控与离子束联合溅射系统中的离子束辅助沉积设备进行制备,溅射靶材为直径50.9 mm、厚度3 mm的圆形Li3PO4靶和边长69.5 mm×69.5 mm、厚度3 mm的方形Si3N4靶.将圆形Li3PO4靶固定于方形Si3N4靶上,组成复合靶.

为测量薄膜电解质的离子电导率,选择Au作为阻塞电极,在Si(100)基片上依次沉积了Au、LiSiPON薄膜和Au,形成Au/LiSiPON/Au的“三明治”结构,如图1所示.利用交流阻抗技术测定其离子电导率.其中,沉积的电解质薄膜厚约600 nm,薄膜Au厚约100 nm.

实验所采用的基底为单面抛光的(100)单晶硅片,依次用丙酮、乙醇超声清洗15 min,吹干后立即送入真空沉积室中.沉积薄膜时,可利用电脑程序精确设置靶材的溅射时间,通过调节通入沉积室内N2气和Ar气的流量改变薄膜中N的含量,得到不同氮含量的LiSiPON薄膜.溅射离子源的工艺参数为溅射能量1.1 keV,溅射束流20 mA.实验时本底真空高于3.0×10-4Pa,镀膜时工作气压约为8.0×10-3Pa.沉积所得薄膜厚度约为500 nm,N2和Ar气的流量比分别为1∶1、1∶2和1∶5,所对应制备的样品编号分别为1#、2#和3#.

采用X线衍射(X-raydiffraction,XRD)仪(D/MAX 2 500)确定薄膜的结构,测定光源为Cu KαX射线,扫描范围为 20°~80°,步长为 0.02°.利用 Hitachi TM3000型X线能量色散谱(energy dispersive X-ray spectroscopy,EDS)确定薄膜中的元素组成和含量.LiSiPON固态电解质的化学组成与结构用X线光电子能谱仪(X-ray photoelectron spectroscopy,XPS)测定.用台阶测厚仪(Ambios XP2)测量电解质薄膜的厚度.利用电化学阻抗测试仪(普林斯顿VersaSAT4)对LiSiPON薄膜进行交流阻抗分析,测量频率为1~100 kHz.

2 结果与讨论

2.1 薄膜的结构和组成

图2是LiSiPON薄膜的XRD图谱.除了基底Si外,图谱中没有出现其他衍射峰,说明薄膜主要形态为非晶态.对于固态电解质薄膜而言,玻璃态电解质电导率的各向同性对制备工艺的简化非常有利,由于非晶薄膜骨架中具有较多空隙,这些空隙有利于锂离子运动和传导[12],降低了锂离子迁移的活化能,因此,具有非晶态结构的电解质薄膜的电导率比晶态结构薄膜的电导率高出许多.

图3和表1分别为氮氩气体流量比为1∶1的薄膜样品(1#)的EDS图谱和3个样品中Si、O、P和N的原子比.由样品的EDS图谱(图3)可以看出,样品1#中有N的沉积,其他2种样品的EDS图谱与图3类似,说明3种不同溅射条件所得薄膜中均出现了N的沉积.由表1可看出,当N2气流量不同时,薄膜中的N含量也存在明显变化.N2气和Ar气流量比为1∶1(1#)时,薄膜中的N原子百分比最高.薄膜中的含氮量与N2流量成正比,提高混合气体中N2气的比例可以获得氮含量较高的薄膜.同时由表1可知,3种样品中均含有大量的Si,这是由于Si在Li2O-P2O5体系中的引入有助于形成交错互连的—Si—O—P—键合,有利于提高薄膜的电导率[14].在Li2O-P2O5体系中再引入N可以改变正磷酸盐阴离子的分布,并形成N的交错互连结构,提高Li+的迁移率,从而有助于获得较高的离子电导率.

表1 1#、2#和3#样品中Si、O、P和N的原子比Tab.1 Si,O,P and N atom ic percentage of sam ples 1#,2#and 3#%

为了进一步考察IBAD沉积所得LiSiPON薄膜的化学组成,对1#样品薄膜进行XPS谱测试,结果如图4所示.分析图4可知,在结合能为398.1 eV处的不对称峰可以分解为在397.6 eV和399.4 eV处的2个峰,分别对应N的键合的P—N=P和结构,而在404.0 eV附近出现的小峰可能对应的N的键合为O—N=O[15].其中,交错互连的结构对提高Li+的迁移率有贡献,基于N1s峰在397.6 eV和399.4 eV处分解的2个峰的相对强度,可以得到电解质薄膜中约有40%的N是以键合的,由此推算薄膜中约有60%的P属于这种交错互连结构.

2.2 薄膜的锂离子电导率

图5为Au/LiSiPON/Au的电化学阻抗谱.图5中低频部分对应电极与电解质界面的贡献,高频部分应电解质薄膜的贡献.阻抗值是交流阻抗图中虚部最小时所对应的实部值.

图5曲线由高频区的半圆和低频区的斜线两部分组成,具有固态离子导体薄膜在阻塞电极间的单一电介质弛豫过程的典型特征.图5中,0~1 000Ω处的半圆是LiSiPON薄膜的贡献;直线部分来自于Ag/LiSiPON/Ag“三明治”结构的阻塞电极体系,而它的斜率可能与Ag电极和电解质之间界面的粗糙度有关.由图5观察不到晶界对电导率的影响,这从另一个方面说明了制备出的LiSiPON薄膜为非晶态结构.LiSiPON电解质薄膜的阻抗Zel可以通过交流阻抗谱中半圆的低频部分在虚部的局部极小值所对应的实部数值得到,薄膜的电导率

式(1)中:R为测得的薄膜阻抗;d为薄膜的厚度;A为电解质薄膜的反应面积.计算得到电解质薄膜的离子电导率为6.8×10-6S/cm,与Bates等[4]制备的LiPON电解质薄膜相比,本研究沉积所得LiSiPON电解质薄膜的离子电导率有所增加.这可能是因为Si在Li2O-P2O5体系中的引入形成了交错互连的—Si—O—P—键合[16-17],此结构提高了电导率.同时,在Li2O-P2O5体系中引入N可以改变正磷酸盐阴离子的分布,并形成N的交错互连结构,提高Li+的迁移率,从而有助于进一步提高离子电导率[18].

3 结论

以圆形Li3PO4和方形Si3N4为靶材,采用离子束辅助沉积的方法在N2气气氛中制备了固态电解质LiSiPON薄膜,所制备的薄膜为无色透明,表面平滑致密,没有颗粒团聚、针孔和裂缝等缺陷.N和Si的掺入提高了Li2O-P2O5体系的离子电导率,离子电导率最高可达6.8×10-6S/cm,说明LiSiPON薄膜对于全固态薄膜锂离子蓄电池而言是一种很有潜力的电解质材料.

[1]INSEOK SEO,STEVEWM.New developments in solid electrolytes for thin-film lithium batteries[J].Lithium Ion Batteries-New Developments,2012,2:101—144.

[2]王兵.日本利用常温工业试制出全固体薄膜锂离子充电电池[J].功能材料信息,2010,7:5—6.

[3]JONESSD,AKRIDGR JR.A thin film solid state microbattery[J].Solid State Ionics,1992,53/56:628—634.

[4]BATESJB,GRUZALSKIGR,DUDNEY N J.Rechargeable thinfilm Lithium batteries[J].Solid State Ionics,1994,70/71:619—628.

[5]DUDNEY N J,BATESJB,ZUHRR A.Nanocrystalline LixMn2-yO4cathodes for solid-state thin-film rechargeable Lithium batteries[J].J Electrochem Soc,1999,146:2455—2464.

[6]耿利群,任岳,朱仁江,等.全固态薄膜锂离子二次电池的研究进展[J].中国西部科技,2013,12(1):8—9.

[7]申万,杨志民,邢光健,等.固态薄膜电解质LiSiPON和其性能研究[J].电源技术,2006,30(3):179—182.

[8]陈梅.利用常温工艺的全固体薄膜锂电池试制成功 [J].电源技术,2011,35:487—488.

[9]WANGB,KWAK BS,SALESBC,et al.Ionic conductivitiesand structureof Lithium phosphorus oxynitride glasses[J].JNon-Cryst Solids,1995,183:297—306.

[10]顾正建,郭晓旺,王定友,等.薄膜锂离子电池多层膜非晶无机固体电解质结构模型的建立与性能分析[J].重庆工学院学报,2009,23(9):171—175.

[11]YUXh,BATESJB,JELLISONGE.Characterization of Lithium phosphorous oxynitride thin films[J].Proceedings-Electrochemical Society,1997,144:524—532.

[12]KARTHIKEYAN A,VINATIER P,LEVASSEUR A.The molecular dynamics study of Lithium ion conduction in phosphate glasses and the roleof non-bridgingoxygen[J].The Journal of Physical Chemistry B,1999,103(30):6185—6192.

[13]WANG B,CHAKOUMAKOS B,SALES B.Synthesis,crystal structure,and ionic conductivity of a polycrystalline Lithium phosphorus oxynitride with theγ-Li3PO4structure[J].Journal of Solid State Chemistry,1995,115(2):313—323.

[14]LEE SJ,BAE JH,LEEh W.Electrical conductivity in Li-Si-PO-N oxynitride thin-films[J].JPower Sources,2003,123∶61—64.

[15]VEPREK S,IQBAL S,BRUNNER J,et al.Preparation and properties of amorphous phosphorus nitride prepared in a low-pressure plasma[J].Phil Mag B,1981,43(3):527—547.

[16]DUCLOT M,SOUQUET JL.Glassy materials for Lithium batteries:Electrochemical properties and devices performances[J].Journal of Power Sources,2001,97/98:610—615.

[17]LIU W Y,LI C L,FU Z W.Stability of Lithium phosphorous oxynitride thin film in humid air[J].Acta Phys Chim Sin,2006,22(11):1413—1418.

[18]申万.用于薄膜微电池的固态薄膜电解质和正极材料的制备和性能研究[D].北京:北京有色金属研究院,2006:31—35.

猜你喜欢

全固态固态锂离子
全固态中波发射机常见故障及处理措施
电视转播台全固态电视发射机的维护探讨
全陶瓷电极可用于锂离子电池
快速充电降低锂离子电池性能存在其他原因
固态Marx发生器均流技术研究
Sn掺杂石榴石型Li7La3Zr2O12固态电解质的制备
透明陶瓷在固态照明中的应用进展
高能锂离子电池的“前世”与“今生”
TSD-10型中波全固态数字发射机常见故障与检修
墨水涂覆法制备硫化物全固态锂离子电池