大功率白光LED高效均流并联供电系统
2013-10-15叶玮琳李艳婷郑传涛
叶玮琳,李艳婷,郑传涛
(1.汕头大学 工学院,广东 汕头 515063;2.吉林大学a.集成光电子学国家重点联合实验室;b.电子科学与工程学院,长春 130012)
0 引 言
随着人们对节能环保型光源的需求以及白光LED(Light Emitting Devices)制作工艺的进步,高效率、低功耗、长寿命的绿色光源----白光LED将逐渐替代传统白炽灯和荧光灯等照明设备[1-4],成为下一代照明设备的首选。在照明的同时,利用白光LED进行室内外可见光通信(VLC:Visible Light Communication)也是近年来新兴的一种短途无线通信技术[5-10]。笔者研究了基于白光LED的VLC通信技术与系统,实现了短距离数据传输[11,12]。为了实现白光LED的照明和通讯双重功能,大电流、高效率、长寿命的供电系统是关键,既要满足高速可见光通信需求(要求对LED提供高速调制信号以形成MHz的亮度调制),又要满足大电流的视觉亮度需求(即可对LED提供稳定的直流工作点)。合理的直流偏置可为LED提供最佳的线性调制区,提高调制深度,进而可改善通信性能。与线性电源相比,DC/DC(Direst Cunent)开关电源具有效率高的优势,成为电源设计的首选[13,14]。为满足白光LED的高效照明和高速通信的需要,同时也为延长电源使用寿命,笔者设计并研制了一种推挽式高效均流双DC/DC并联供电系统。
1 系统结构和原理
大功率白光LED的供电系统需提供大电流并具备高稳定性,相比多支路并联供电系统而言,在同等电流需求下,单支路供电系统需提供的电流更大,因此单支路型电源的寿命短。鉴于此,设计了双支路DC/DC并联供电系统,两个支路实现分流工作,既提高了效率,又延长了使用寿命,具有传统驱动系统不可比拟的优点。
设计方案如图1所示,采用两个DC/DC支路同为Buck型降压电路[15]、电子开关实现支路电流调节、PWM(Pulse Width Modulation)驱动信号占空比实现稳压、霍尔电流传感器并辅以调整、比较、延时等电路实现过流保护。所设计的驱动电源包括4部分:双DC/DC并联模块;电压、电流采样模块;过流保护及自恢复模块;ARM7(LPC2148)主控模块。图1中(1)为DC/DC支路2的控制信号PWM2,其占空比决定支路2的输出电压;(2)为DC/DC支路1的控制信号PWM1,其占空比决定支路1的输出电压;(3)为均流控制信号PWM3。系统工作原理是:利用两PMOS(P-channel Metal-Oxide-Semiconductor)电子开关(Electronic switch 1、Electronic switch 2)实现两支路均流,通过采集输出电压并调节PWM1和PWM2的占空比实现稳压,通过霍尔电流传感器并辅以调整、比较、延时等电路实现过流保护。
图1 VLC用大功率白光LED的双DC/DC并联供电系统的原理框图
2 系统的模块化设计
2.1 DC/DC Buck型稳压电路
两个DC/DC支路采用PWM(Pulse Width Modulation)控制的Buck型降压电路(见图2)。图2中OUT1为支路1的输出电压,OUT2为支路2的输出电压。利用电感和电容的储能特性,随着PMOS管不停地导通和关断,具有较大电压波动的直流电源能量断续地经过开关管,暂时以磁场能形式存储在电感器中,然后经电容滤波得到连续的能量传送到负载,得到脉动较小的直流电压,实现DC/DC变换。PMOS管型号为SI4405,PMOS驱动器为ADP3624;PWM1、PWM2为由ARM7产生的频率固定、占空比可调的方波信号,可分别调节两DC/DC支路的输出电压。为得到稳定的输出电压,采取如下设计方案:
1)合理选择PWM频率,有效降低输出电压的纹波系数,设计中取为20 kHz;
2)当负载变化时,通过计算输出电压(由AD采样获得)与目标值的差值大小,采用模糊PID(Proportion-Integral-Derivative)算法[16],调节PWM1、PWM2的占空比,在较短时间内,调整输出电压至所需的稳定值。
图2 Buck型DC/DC支路的电路图
两个DC/DC支路的均流方案如下:在两个DC/DC支路的输出端分别接高速PMOS电子开关,利用ARM7输出一个50%占空比的方波信号(PWM3)控制一路PMOS电子开关,同时利用该方波信号的反相信号控制另一支路的PMOS电子开关。由于两支路输出电压相等,且在推挽模式下各工作50%时间,进而可实现均流作用。
2.2 电流及电压采集模块
采用霍尔传感器(ACS712-20A)测量LED电流,它是利用霍尔效应制成的传感芯片,最大可测电流为20 A,满足白光LED照明时所需的大电流要求。该器件内部集成精确的低偏置线性霍尔传感电路,且其铜制的电流路径靠近晶片表面,通过该铜制电流路径施加的电流能被集成霍尔芯片感应并转化为比例电压输出。通过标定霍尔传感器的输出电压与流经电流的关系,就可确定流经LED的电流大小。由于ACS712-20A的输出电压及被测电流间的反应灵敏度较低,故设计了一个灵敏度增强电路,主放大器为LM358,该电路可将灵敏度提高约3.3倍。利用AD转换芯片ADS1100采集负载两端电压,实现反馈控制。
2.3 过流保护及自恢复模块
该并联均流供电系统具有过流保护及自恢复功能,实现原理如图3所示。其工作过程如下。1)将霍尔电流传感器输出的电压信号通过比例放大、电压比较后产生用于驱动继电器的信号。2)如果电流超过LED承受能力,则比较器输出高电平,此时继电器驱动器2立即动作,同时将DC/DC主电路的K1和负载回路的K2断开(避免DC/DC储能电容继续向负载充电),形成双重过流保护。3)由于当DC/DC主电路以及负载回路关断后,霍尔电流传感器输出电压不能使比较器继续输出高电压,所以继电器驱动器2无法使K1和K2继续断开。为更长时间保护电子线路不受损坏,设计中加入了延时保护电路,即当电压比较器输出高电平时(继电器驱动器2已工作),向一个储能电容充电(由于充电时间常数小,充电过程很短)。当继电器驱动器2停止工作时,该充电电容通过放电作用会使继电器驱动器1 在较长的时间内继续动作,从而保持K1和K2持续断开,形成延时保护(K1和K2由继电器驱动器1和2双重控制,任意一个工作时,都可使二者断开)。4)当继电器驱动器1或2工作时,可点亮LED,发出报警信号。5)当继电器驱动器1和2均不工作时,继电器开关K1和K2吸合,LED报警灯灭,实现自恢复。
图3 过流保护及自恢复电路框图
3 实验结果与数据分析
3.1 大功率白光LED与高效均流并联供电系统的集成
为测试所制作的双DC/DC并联供电系统的性能,采用3 W大功率白光LED(额定电流750 mA、额定电压4.0 V)做了驱动实验与性能测试,LED的照片如图4所示。将大功率白光并联供电系统、大功率白光LED、数据编码模块、Bias-Tee耦合模块以及按键/指示灯等进行了系统集成,研制了兼具照明与通信双重功能的通信装置(见图4b)。利用该装置,对给出的并联供电系统进行了实验。
a 3 W大功率白光LED b 大功率白光LED、驱动电源等模块的系统集成
3.2 照明状态时的均流特性实验
通过按键分别设定驱动器输出电压为0.5 V、1.0 V和3.0 V,接上白光LED,分别读取两个DC/DC支路的工作电流I1和I2、LED两端的工作电压U0以及流经LED的工作电流I0,其测试结果如表1所示。定义输出电压误差
(1)
其中U0,exp为实验测得的输出电压,U0,the为理论设定的输出电压。定义两支路电流偏差
(2)
表1 大功率白光LED双DC/DC并联供电电源的均流性能测试结果
由表1可见,测得的实际电压与设定值相比,3次测量的误差小于2%,两支路电流的偏差小于1%,实现了很好的稳压与均流效果。
3.3 照明状态时的电源效率实验
定义供电电源的效率为
(3)
其中Ii和Ui分别该系统的输入电压和输入电流。在表1所示的3种驱动情况下,分别测量了电路输入电压,输入电流,输出电压和输出电流,进而计算出供电效率,其结果如表2所示。当电源输出电压较小时,电源的效率较小,当输出电压增大时,电源效率增大,可达80%以上。
表2 大功率白光LED双DC/DC并联供电电源的供电效率测试结果
3.4 可见光通信状态时输出电压的线性区测试
当白光LED处于通信模式时,为保证通信质量,需要提供稳定、线性的驱动电压。为验证该供电系统的线性特性,将其用来驱动白光LED,同时使用可见光PIN探测器测试了探测器的响应。实验测得的PIN探测器输出电压随白光LED驱动电压的关系如图5所示。可以看出,当驱动电压小于1.6 V时,白光LED进入非线性工作区。因此,当将该供电电源驱动白光LED进行可见光通信时,应使其输出电压(亦即Bias-Tee的直流输入电压)调整至线性区中间点(亦称为线性工作点),约为2.7 V。
3.5 动态响应测试
当使用该双DC/DC并联供电电源驱动白光LED时,笔者研究了当电源上电和关电时,LED两端电压的瞬时变化特性,测量结果如图6所示。可以看到,由于DC/DC电源输出端电容的储能作用,输出电压在上电和关电时并不存在尖峰和毛刺现象,因此,不会损坏LED。另外,从响应曲线可以看出,当电压从0 上升至稳定的1.6 V时,上升时间约为20 s,关电降至0 的下降时间约为65 s。
3.6 对比讨论
在仅保留一个DC/DC支路工作时,就构成了单支路供电电源系统。针对单支路供电系统和双支路供电系统,笔者通过实验进行对比分析,结果如表3所示,设定输入电压为12 V,输出电压为3.0 V。从效率来讲,由于双支路使用了更多的电学元件,这将耗散更多的功率,其效率比单支路电源系统略低。然而,双支路中各DC/DC支路交替工作,各支路耗散的功率仅为单支路的一半。由于器件的寿命与耗散功率有关,且功率越大,寿命越短,因此,在正常工作方式下,双支路电源系统的寿命将比单支路电源系统的寿命长。
图5 PIN探测器输出电压随白光LED驱动电压的关系曲线 图6 设置白光LED驱动电压为1.6 V时,电源开启和关断时,LED两端驱动电压的瞬时响应曲线
表3 单支路和双支路供电电源的性能对比
4 结 语
通过对两个Buck型DC/DC电路进行并联,并结合PID控制算法,设计并研制了一种用于驱动大功率白光LED的高效均流供电系统,并利用该并联电源对白光LED进行了驱动以及测试实验。实验结果表明,电源实际输出电压与设定值的误差小于2%,两支路电流的偏差小于1%,电源供电效率可达到75%~80%。在电源开启和关断瞬间,输出电压无尖峰现象。当输出电压设为1.6 V时,上升和下降时间分别约为20 s和65 s。由于两个DC/DC电路交替推挽工作,因此,该电源具有较长的使用寿命,从而在LED照明和VLC系统中具有良好的应用前景。
参考文献:
[1]王志军,李盼来,杨志平,等.LiCaPO4:Eu3+材料制备白光LED及其发光特性[J].光电子:激光,2011,22(5):718-721.
WANG Zhi-jun,LI Pan-lai,YANG Zhi-ping,et al.Preparation and Luminescent Characteristics of White LED with LiCaPO4:Eu3+Phosphor[J].J Optoelectron Laser,2011,22(5):718-721.
[2]周龙早,刘辉,安兵,等.荧光层形状对大功率白光LED光学性能的影响[J].光电子:激光,2010,21(2):175-177.
ZHOU Long-zao,LIU Hui,AN Bing,et al.Impact of Phosphor Layer’s Geometry on Optical Properties of High Power White LED[J].J Optoelectron Laser,2010,21(2):175-177.
[3]崔德胜,郭伟玲,崔碧峰,等.高显色白光LED的制备及其变温特性[J].光学学报,2012,32(1):0123005-1-0123005-4.
CUI De-sheng,GUO Wei-ling,CUI Bi-feng,et al.Preparation and Temperature-Variation Properties of High Color Rendering Index LED[J].Acta Optica Sinica,2012,32(1):0123005-1-0123005-4.
[4]曹宇杰,金尚忠,岑松原.高显色指数LED灯的设计[J].光学学报,2011,31(12):1222002-1-1222002-7.
CAO Yu-jie,JIN Shang-zhong,CEN Song-yuan.Design for LED Lamps with High Color Rendering Index[J].Acta Optica Sinica,2011,31(12):1222002-1-1222002-7.
[5]ANAKA Y,HARUYAMA S,NAKAGAWA M.Wireless Optical Transmission with the White Colored LED for the Wireless Home Links[C]∥The 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications.2000,2:1325-1329[2012-05].http:∥electricalandelectronics.org/wp-content/uploads/2008/11/0088/634.pdf.
[6]KOMINE T,NAKAGAWA M.Integrated System of White LED Visible-Light Communication and Power Line Communication[J].IEEE Trans on Consumer Electronics,2003,49(1):71-79.
[7]REMACHANDRA HCN,YENDO T,YAMASATO T,et al.Detection of LED Traffic Light by Image Processing for Visible Light Communication System[C]∥2009 IEEE Intelligent Vehicles Symposium.2009:179-184[2012-06-23].http:∥ieeexplove.ieee.org/xpls/abs-all.jsp?arnumber=5164274.
[8]GRUBOR J,LANGER K D.Efficient Signal Processing in OFDM-Based Indoor Optical Wireless Links[J].J Netw,2010,5(2):197-211.
[9]VUCIC J,KOTTKE C,NERETER S,et al.513 Mbit/s Visible Light Communications Link Based on DMT-Modulation of a White LED[J].J Lightwave Technol,2010,28(24):3512-3518.
[10]KWON J K.Inverse Source Coding for Dimming in Visible Light Communications Using NRZ-OOK on Reliable Links[J].IEEE Photon Technol Lett,2010,22(19):1455-1457.
[11]JIA Y P,YE W L,TIAN C W,et al.Numerical Analysis on an OOK-NRZ Visible Light Communication System Based on a Single White LED[J].Optoelectronics Letters,2011,7(5):376-379.
[12]IAN C W,LI Y T,YE W L,et al.Performance Study of an OFDM Visible Light Communication System Based on White LED Array[J].Optoelectronics Letters,2011,7(6):449-452.
[13]李演明,来新泉,袁冰,等.一种DC-DC开关电源片上软启动电路[J].半导体学报,2008,29(6):1212-1213.
LI Yan-ming,LAI Xin-quan,YUAN Bing,et al.A Soft Start-up Circuit of DC-DC Switch Power[J].Chinese Journal of Semiconductors,2008,29(6):1212-1213.
[14]杜鹏英,金海.数字式PWM AC-DC/DC电源并联系统分析与研究[J].仪器仪表学报,2008,29(4S):630-633.
DU Peng-ying,JIN Hai.Analysis and Research of Digital Controlled Parallel PWM AC-DC/DC Power[J].Chinese Journal of Scientific Instrument,2008,29(4S):630-633.
[15]丁玲,余昭杰,李靖,等.基于0.5 μm CMOS工艺的BOOST变换器设计[J].吉林大学学报:信息科学版,2012,30(1):1-4.
DING Ling,YU Zhao-jie,LI Jing,et al.BOOST Converter Design in 0.5 μm CMOS Technology[J].Journal of Jilin University:Information Science Edition,2012,30(1):1-4.
[16]任敏,王明芳,任英.模糊神经网络PID控制器在污水处理中的应用[J].吉林大学学报:信息科学版,2011,29(6):595-599.
REN Min,WANG Ming-fang,REN Ying.Application of Fuzzy Neural Network PID Controller in Sewage Treatment[J].Journal of Jilin University:Information Science Edition,2011,29(6):595-599.