APP下载

量子点的制备及应用研究进展

2013-04-10朱专赢吴昌达娄童芳杜学萍屈建莹

化学研究 2013年5期
关键词:巯基氧氟沙星探针

朱专赢,吴昌达,娄童芳,杜学萍,屈建莹

(河南大学 化学化工学院,环境与分析科学研究所,河南 开封 475004)

量子点(QDs)又称半导体纳米晶,是一种由Ⅱ-Ⅵ族或Ⅲ-Ⅴ族元素组成的纳米颗粒, 直径约1~100 nm[1-3]. 由于QDs具有较小的尺寸,使其具有特殊的小尺寸效应[4]、表面效应[5]、量子尺寸效应[6]及宏观量子隧道效应[7]. 量子点表现出独特的光学特性,如量子产率高、荧光寿命长、消光系数大、光耐受性强、发射光谱窄和激发光谱范围较宽等[8-9]. 量子点的制备和应用引起了人们广泛的研究兴趣[10],在生物医学[11-13]和光电子[14]领域都拥有广阔的应用前景.

1 量子点的制备

量子点的制备方法有很多种,如电化学沉积法、气相沉积法、微乳液法、溶胶法等,其中溶胶法是最常用的制备方法. 溶胶法包括有机相合成法和水相合成法.水相合成法又可细分为传统水相法、水热法、微波辅助水相法等.

1.1 有机相合成法

早期的量子点合成通常是采用有机相合成法. 1990年,BRUS等[15]在有机相中合成出了质量好、发光效率高的CdSe量子点. 1993年,MURRAY等[16]通过有机金属前驱体Cd(CH3)2和S、Se、Te等前驱体在三辛基氧膦(TOPO)溶剂中反应,直接合成高质量的CdE(E=S, Se, Te)量子点. 2001年,PENG[17]对传统有机相合成法进行改进,用金属氧化物CdO代替有毒的有机镉金属化合物作为反应前体,一步合成了CdS, CdSe,CdTe量子点. 随后,他又提出非络合溶剂合成方法,大大降低了量子点合成的难度[18].2005年,YANG等[19]提出了一种绿色的合成方法,他们不用有机膦和空气中敏感的化合物,进一步改善和简化了CdSe的合成途径. 2007 年,PRADHAN等[20]提出了更加绿色的合成量子点的方法. 后来,YANG[21]在有机体系中制备出了发光性能优异的Mn掺杂的CdS/ZnS核壳式量子点. DAI等[22]用橄榄油既作配体又作溶剂合成了分散性良好的ZnSe量子点和纳米花. 2009年DENG等[23]用液体石蜡替换TOPO溶剂合成了ZnxCd1-xSySe1-y(0≤x≤1; 0≤y≤1)合金量子点.

1.2 水相合成法

1.2.1 传统水相法

1994年,VOSSMEYER T等[24]首次使用巯基化合物1-硫代甘油为稳定剂在水溶液中合成了CdS量子点. 陈启凡等[25]用传统水相合成法合成了半胱氨酸包覆的CdTe量子点,并将它用于生物体DNA的检测. 1998年ZHANG等[26]以巯基乙酸为稳定剂通过Cd2+与NaHTe在水相中的反应合成出了水溶性量子点. 2003年,ZHUANG等[27]用巯基乙酸为稳定剂制备了Mn掺杂ZnS量子点,并且研究了不同反应条件对量子点荧光强度的影响. 2007年,QIAN等[28]在水相中制备出不同尺寸和组成的CdHgTe量子点. 2009年,LAW等[29]在水溶液中制备出了CdTe/ZnTe核壳量子点,并将它成功应用于生物成像.

1.2.2 水热法

2003年,ZHANG等[30]利用水热法合成了CdTe纳米粒子,并对各个反应条件进行了研究. MAO等[31]采用水热法以巯基丙酸作稳定剂一步合成CdTeS合金量子点,并用于生物成像方面的研究. 2009年,ZHAO等[32]以N-乙酰-L-半胱氨酸作为稳定剂合成了核壳结构的CdTe/CdS量子点.

1.2.3 微波法

KOTVO等[33]首次使用微波辅助法合成量子点. 2005年,REN等[34]以巯基丙酸为稳定剂,利用微波辅助法合成出来一系列的CdTe量子点. 利用微波辅助法,CdTe/CdS[35]、CdTe/CdS/ZnS[36]、CdSe/ZnS[37]等一系列的核壳结构的量子点相继被合成出来. 微波辅助法合成量子点目前已经成为一种发展趋势.

2 量子点的应用

2.1 量子点在分析检测中的应用

2.1.1 测定金属离子的含量

XIA等[38]在水介质中合成了巯基乙酸包覆的量子点,进一步采用变性的牛血清蛋白修饰CdS量子点,采用荧光猝灭法测定Hg2+,此方法检出限为4.0×10-9mol·L-1.李梦莹等[39]用半胱氨酸作修饰剂,水热法合成CdS量子点,基于荧光猝灭作用,实现了对痕量Hg2+的定量检测.

2.1.2 测定药物含量

张犁黎等[42]在碱性溶液中使用硫代乙酰胺制备CdS荧光纳米粒子. 该纳米粒子的荧光强度能被药物成分柳氮磺吡啶所猝灭,建立了一种高选择性测定柳氮磺吡啶的荧光分析新方法,检测下限达到0.1 mg·L-1. 此方法已用于对药物中柳氮磺吡啶的测定,方法甚佳. 董学芝等[43]于水相中合成了CdS量子点,基于左氧氟沙星对CdS与牛血清白蛋白复合物的荧光有明显的猝灭作用,建立了一种检测左氧氟沙星的方法. 结果表明,在左氧氟沙星浓度为0.2~20 mg·L-1时,左氧氟沙星-CdS-BSA体系的荧光猝灭程度与左氧氟沙星的浓度存在良好的线性关系,检出限为0.03 mg·L-1. 此方法已成功用于盐酸左氧氟沙星片剂和胶囊的测定,与传统方法相比,结果令人满意.

2.2 量子点在生物、医药学领域中的应用

2.2.1 荧光量子点探针的应用

PAN[44]等用叶酸修饰可生物降解的聚丙交酯-维生素E琥珀酸酯(PLA-TPGS)纳米粒子,并将量子点包裹进该纳米粒子中,制备出一种新型荧光探针,该荧光探针具有靶向作用和降低细胞毒性的优点. 该荧光探针还可用于叶酸受体高表达的乳腺癌细胞MCF-7的成像,荧光强度较大. BALLOU等[45]将PEG包裹的QDs作为荧光探针通过尾静脉注入小鼠体内,间隔不同时间解剖后观察QDs在体内的荧光稳定性,结果表明PEG修饰后的QDs不仅具有水溶稳定性,可以有效降低探针在网状内皮系统的非特异性吸附,而目在肝脏、淋巴结和骨髓中至少可以保留1个月,同时可以增加QDs在循环中的半衰期,有助于实现QDs在活体内长时间实时动态示踪观察.

2.2.2 荧光量子点在活体肿瘤细胞成像中的应用

GAO等[46]采用聚乙二醇( PEG)包覆的QDs标记前列腺特异性膜抗原( PSMA) 的抗体,经小鼠尾部静脉注射,实现了对表达PSMA 前列腺癌细胞的靶向成像,探测了QDs 在动物体内的生物分布、非特异性摄取、细胞毒性等.TAKEDA等[47]成功制备了HER2抗体与CdSe量子点复合的产物,该产物可使活体原发性肿瘤成像. 实验结果表明,该复合物可靶向传递到表面表达HER2蛋白的乳腺癌细胞上,并提高荧光标记的特异性,可以很好的识别特定肿瘤细胞.

2.3 量子点在指纹显现中的应用

2000年,美国的 MENZEL 等[48-49]首次报道了CdS量子点用于易拉罐表面的指纹显现,开创了量子点作为新材料在指纹显现方面应用的先例. 随后,MENZEL等[50]利用 PAMAM(聚酰胺-胺型树形分子)作为模板,通过树形分子的空间限阈效应来控制包裹在树形分子内的 CdS量子点的生长,合成的CdS/PAMAM聚合物用甲醇作为溶剂稀释后,成功地用于铝箔和聚乙烯样品上的潜指纹显现. 他们认为,CdS/PAMAM表面的氨基或羧基等官能团能与指纹残留物作用使CdS/PAMAM沉积到指纹纹线上,在紫外光照射下,通过CdS/PAMAM聚合物的荧光显现指纹. 熊海等[51]在有机相中合成了InP量子点,通过相转移、紫外光照复合等过程得到了巯基乙酸修饰的InP/ZnS量子点,其荧光发射波长从450 nm红移至575 nm,在紫外光照下可以清晰显现出指纹图像. 该方法可用于不同背景颜色的多种客体(如透明胶带、黑色塑料袋、锡纸等)表面指纹的鉴定.

2.4 量子点在光电学元器件中的应用

2008年,GUO等[52]采用热注入法制备出均一的六边形环状黄铜矿结构的CuInSe2,并采用成膜高温热硒化法,制备出结构为Mo/CuInSe2/CdS/ZnO/ITO的电池器件,能量转换效率为3.2%. 随后,GUO等[53]将制备的Cu(In1-xGax) S2纳米晶“墨水”制成薄膜后,采用加热硒化法,制备出Cu( In1-xGax) ( Se1-ySy)2薄膜,将该薄膜作为吸收层,得到能量转换效率为4.76%的太阳能器件. 除太阳能电池之外,纳米晶还可用在发光二极管和光探测器等器件中,ZHONG等[54]利用CuInSe2/ZnS纳米晶作发光层成功制备了红光和近红外发光的发光二极管. ZHANG等[55]利用红光量子点ZnCuInS/ZnS和蓝绿光有机物作为发光层制备了白光发光二极管.

结语:量子点以独特的物理和化学特性而成为研究的热点,制备量子产率高、生物相溶性好的量子点和简单化的合成方法将成为量子点合成的发展趋势. 量子点在化学、生物、医药、材料等方面都得到了一定的应用,扩展量子点的应用范围也将成为量子点研究的一个重要方向.

参考文献:

[1] GAO Xiao Hu, YANG Lily, PETROS J A, et al. Invivo molecular and cellular imaging with quantum dots [J]. Curr Opiniotech, 2005, 16(1): 63-72.

[2] MICHALET X, PINAUD F F, BENTOLILA L A, et al. Quantum dots for live cells in vivo imaging and diagnostics [J]. Science, 2005, 307(5709): 538-544.

[3] HAHN M A, TABB J S, KRAUSS T D. Detection of single bacterial pathogens with semiconductor quantum dots [J]. Anal Chem, 2005, 77(15): 4861-4869.

[4] HALPERIN W P. Quantum size effects in metal particles [J]. Rev Mod Phys, 1986, 58(3): 533-606.

[5] NAKAMURA S, MUKAI T, SENOH M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes [J]. Appl Phys Lett, 1994, 64(13): 1687-1689.

[6] EYCHMÜLLER A. Stucture and photophysics of semiconductor nanocrystals [J]. J phys Chem B, 2000, 104(28): 6514-6518.

[7] NAKAMURA S. First Ⅲ-Ⅴ-nitride violet laser diodes [J]. J Crystal Growth, 1997, 170(1/4): 11-15.

[8] MATTOUSSI H, MAURO J M, GOLDMAN E R, et al. Banwendi, self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein [J]. J Am Chem Soc, 2000, 122: 12142-12150.

[9] JAISWAL J K, SIMON S M. Potentials and pitfalls of fluorescent quantum dots for biological imaging [J]. Trends Cell Biol, 2004, 14: 497-504.

[10] MA Qiang, SU Xin Guang. Recent advances and application in QDs-based sensors [J]. Analyst, 2011, 136: 4883-4893.

[11] GOLDMAN E R, ANDERSON G P, MAURO J M, et al. Conjugation of luminescent quantum dots with anti bodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays [J]. Anal Chem, 2002, 74: 841-847.

[12] PARAK W J, BOUDREAU R, LARABELL C, et al. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks [J]. Adv Mater, 2002, 14:882-885.

[13] SAMIA A C, CHEN X, BURDA C. Semiconductor quantum dots for photodynamic therapy [J]. J Am Chem Soc, 2003, 125: 15736-15737.

[14] LI X, FRYER J R, COLE-HAMILTON D J. A new, simple and versatile method for the production of nano-scale particles of semiconductors[J]. Chem Commun, 1994, 14: 1715-1716

[15] STEIGERWALD M L, BRUS L E.Semiconductor crystallites: a class of large molecules [J]. Acc Chem Res, 1990,23(6): 183-188.

[16] MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. J Am Chem Soc, 1993, 115: 8706-8715.

[17] PENG Z A, PENG X G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor [J]. J Am Chem Soc, 2001, 123: 183-184.

[18] YU W W, PENG X G. Formation of high-quanlity Cds and otherⅡ-Ⅵ semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers[J]. Angew Chem Int Ed, 2002, 41(13): 2368-2371.

[19] YANG Yong An, WU Hui Meng, WILLAMS K R, etal. Synthesis of CdSe and CdTe nanocrystals without precursor injection[J]. Angew Chem Int Ed, 2005, 117(44): 6870-6873.

[20] PRADHAN N, REIFSNYDER D, XIE R G, et al. Surface ligand dynamics in growth of nanocrystal [J]. J Am Chem Soc, 2007, 129(30): 9500-9509.

[21] YANG Yong An, CHEN Ou, ANGERHOFER A, et al. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals [J]. J Am Chem Soc, 2005, 128(41):12428-12429.

[22] DAI Quan Qin, XIAO Ning Ru, NING Jia Jia, et al. Synthesis and mechanism of particle and flower-shaped ZnSe nanocrystals: green chemical approaches toward green nanoproducts[J]. J Phys Chem C, 2008, 112(20): 7567-7571.

[23] DENG Zheng Tao, YAN Hao, LIU Yan. Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method [J]. J Am Chem Soc, 2009, 131: 17744-17745.

[24] VOSSMEYER T, KATSIKAS L, GIERSIG M, et al. CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift [J]. J Phys Chem, 1994, 98:7665-7673.

[25] 陈启凡,王文星,葛颖欣.半胱胺包被的碲化镉量子点的直接水相制备及其与DNA链接[J].分析化学,2007, 35(1): 135-138.

[26] ZHANG Hao, ZHOU Zhen, YANG Bai. The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles [J]. J Phys Chem B, 2003, 107: 8-13.

[27] ZHUANG Jia Qi, ZHANG Xiao Dong, WANG Gang, et al. Synthesis of nanocrystals by using mercaptopropionic acid as stabilizer [J]. J Mater Chem, 2003, 13: 1853-1857.

[28] QIAN Hui Feng, DONG Chao Qian, PENG Jin Liang, et al. High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition [J]. J Phys Chem C, 2007, 111: 16852-16857.

[29] LAW W C, YONG K T, PRASAD P N, et al. Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging [J]. Small, 2009, 5: 130.

[30] ZHANG Hao, ZHOU Zhen, YANG Bai, et al. The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles [J]. J Phys Chem B, 2003, 107:1302-1310.

[31] MAO Wei Yong, GUO Jia, YANG Wu Li, et al. Synthesis of high-quality near-infrared-emitting CdTeS alloyed quantum dots via the hydrothermal method [J]. Nanotechnology, 2007, 18: 485611.

[32] ZHAO Dan, HE Zhi Ke, CHAN W H, et al. Synthesis and characterization of high-quality water-soluble near-infrared-emitting CdTe/CdS quantum dots capped by N-acetyl-L-cysteine via hydrothermal method [J]. J Phys Chem C, 2009, 113: 1293-1300.

[33] CORREA-DUARTE M A, GIERSIG M, KOTOV N A, et al. Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2coating by microwave irradiation [J]. Langmuir, 1998, 14: 6430-6435.

[34] LI L, QIAN H F, REN J C. Rapid synthesis of highly luminescent CdTe QDs in the aqueous phase by microwave irradiation with controllable temperature[J]. Chem Commun, 2005(4): 528-530.

[35] HE Yao, LU Hao Ting, SAI Li Man, et al. Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence[J]. J Phys Chem B, 2006, 110: 13370-13374.

[36] HE Yao, LU Hao Ting, SAI Li Man, et al. Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility [J]. Adv Mater, 2008, 20: 3416-3421.

[37] SCHUMACHER W, NAGY A, WALDMAN W J, et al. Direct synthesis of aqueous CdSe/ZnS-based quantum dots using microwave irradiation [J]. J Phys Chem C, 2009, 113: 12132-12139.

[38] XIA Yun Sheng, ZHU Chang Qiang. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II)[J]. Talanta, 2008, 75(1): 215.

[39] 李梦莹, 周华萌, 董再蒸. 半胱氨酸包覆的CdTe量子点作为荧光离子探针测定痕量汞(Ⅱ)[J]. 冶金分析,2008, (12):7-11.

[41] 董海涛, 刘 岩. 量子点-铕复合纳米粒子比率型荧光探针的制备与铜(Ⅱ)离子测定的应用[J]. 分析化学,2009(1):136.

[42] 张犁黎,郑行望,屈颖娟. 硫化镉纳米粒子荧光淬灭测定柳氮磺吡啶[J]. 山西师范大学学报,2006,34(2):74-79.

[43] 胡卫平,焦 嫚,董学芝. CdS量子点荧光光度法测定蛋白质的含量[J]. 光谱学与光谱分析, 2011,31(2):444-447.

[44] PAN Jie, FENG Si Shen. Targeting and imaging cancer cells by folate-decorated, quantum dots(QDs)-loaded nanoparticles of biodegradable polymers [J]. Biomaterials, 2009, 30(6): 1176-1183.

[45] BALLOU B, LAGERHOLM BC, ERNST L A, et al. Nonivasive imaging of quantum dots in mice [J]. Bioconjug Chem, 2004, 15(1): 79-86.

[46] GAO Xiao Hu, CUI Yuan Yuan, LEVENSON R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nat Biotechnol, 2004, 22(8): 969-976.

[47] TAKEDA M, TADA H, HIGUCHI H, et al. In vivo single molecular imaging and sentinel node navigation by nanotechnology for molecular targeting drug-delivery systems and tailor-mademedicine [J]. Breast Cancer, 2008, 15 (2): 145-152.

[48] TAN Zha Nao, ZHANG Yu, XIE Chuang, et al. Near-band-edge electroluminescence from heavy-metal-free colloidal quantum dots [J]. Adv Mater, 2011, 23: 3553-3558.

[49] MENZEL E R, SAVOY S M, ULVICK S J,et al.Photoluminescent semiconductor nanocrystal for fingerprint detection[J]. J Forensic Sci, 2000, 45(3): 545-551.

[50] MENZEL E R, TAKASTU M, MURDOCK R H, et al. Photoluminescent CdS/dendrimer nanocomposites for fingerprint detection[J]. J Forensic Sci, 2000, 45(4): 770-773.

[51] 熊 海,王 珂,于迎春.水溶性InP/ZnS量子点的合成及其在指纹显现中的应用[J]. 化学研究,2011, 22(3): 11-16.

[52] GUO Qi Jie, KIM S J, KAR M, et al. Development of CuInSe2nanocrystal and nanoring inks for low-cost solar cells[J]. Nano Lett, 2008, 8: 2982-2987.

[53] GUO Qi Jie, FORD G M, HILLHOUSE H W, et al. Sulfide nanocrystal inks for dense Cu(In(1-x)Gax)(S(1-y)Sey)2absorber films and their photovoltaic performance [J]. Nano Lett, 2009, 9: 3060-3065.

[54] ZHONG Hai Zheng, WANG Zhi Bin, BORICO E, et al. Colloidal CuInSe2nanocrystals in the quantum confinement regime: synthesis, optical properties, and electroluminescence [J]. J Phys Chem C, 2011, 115: 12396-12402.

[55] ZHANG Yu, XIE Chuang, SU Hai Peng, et al. Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes[J]. Nano Lett, 2010, 11(2):329-332.

猜你喜欢

巯基氧氟沙星探针
巯基改性泥炭对水体中Hg2+的吸附解吸研究
多通道Taqman-探针荧光定量PCR鉴定MRSA方法的建立
BOPIM-dma作为BSA Site Ⅰ特异性探针的研究及其应用
透射电子显微镜中的扫描探针装置
巯基-端烯/炔点击反应合成棒状液晶化合物
海洋中β-二甲基巯基丙酸内盐降解过程的研究进展
左氧氟沙星致癫痫持续状态1例
盐酸左氧氟沙星治疗盆腔炎的疗效观察
左氧氟沙星及莫西沙星引起神经毒性1例
基于分子内电荷转移机制的巯基荧光比色化学传感器