冬小麦种植面积遥感提取方法研究
2013-01-28权文婷
权文婷,王 钊
(陕西省农业遥感信息中心,西安 710014)
0 引言
冬小麦是世界主要粮食作物之一。区域冬小麦种植面积是影响冬小麦总产量的主要因子。近年来,随着气候变暖、耕地占用和种植结构调整等自然条件和人文影响,冬小麦种植范围出现了变化。及时了解冬小麦种植面积,对开展冬小麦长势监测和估产、区域粮食安全评估等工作具有重要的社会意义。同时,农业管理部门及时掌握冬小麦种植分布情况,也有助于提高生产管理效率。遥感技术具有探测面积大、数据更新周期短、真实客观等特点,是快速、准确提取冬小麦种植面积的有效手段之一[1],长期以来也是众多学者研究的热点[2-4]。近年来,随着空间技术的日益发展,高空间分辨率、高光谱分辨率、高时间分辨率以及微波等探测技术不断应用到农业遥感领域;而新的解译模型的开发,将会进一步提高冬小麦种植面积遥感提取的精度。本文综述了冬小麦种植面积遥感提取的主要研究方法,讨论了目前研究中存在的问题和未来发展方向。
1 国外研究进展
在国际上,利用遥感技术的作物种植面积监测始于美国,1974年实施的“大面积作物清查试验”(large area crop inventory experiment,LACIE)计划对美国及世界其他地区小麦面积和总产量进行了估算;随后开展的“农业和资源的空间遥感调查”(agricultural and resources inventory surveys through aerospace remote sensing,AGRISARS)计划对世界多种作物进行了长势评估和产量预报,并将遥感技术成功地应用于框图面积取样(area sampling frame,ASF)。欧盟在1987年曾发起农业遥感监测(monitoring agriculture with remote sensing,MARS)项目,随后俄罗斯、法国、加拿大等国也相继利用遥感技术展开作物面积监测研究[5-7]。
研究中最常用的遥感数据为Landsat TM图像,例如Julien等[8]利用TM数据选取西班牙巴拉克斯地区,基于地表温度和NDVI数据,采用最大似然法分类得到农业用地,精度达87%。与TM数据相比,气象卫星AVHRR数据拥有较高的时间分辨率,Quarmby等[9-10]分别使用 AVHRR 数据与 AVHRR NDVI数据对冬小麦面积进行提取,结果表明AVHRR数据也能较好地提取冬小麦面积信息,精度达89%。
随着卫星遥感技术的不断发展,高空间分辨率卫星图像在作物种植面积提取方面得到了广泛的应用。Tuner[11]使用SPOT XS数据对西非的萨赫勒地区进行作物监测,将非监督分类、分层和监督分类方法有序结合,分类精度达71%;并针对该研究区作物种植面积小、植被覆盖度低等特点,有效地解决了同物异谱问题;Kontoes等[12]则使用SPOT图像,采取遥感与GIS技术相结合的方法,从遥感纹理和地理信息2方面入手进行作物分类,精度比使用传统分类器提高近13%。
高光谱分辨率遥感数据拥有更丰富的光谱信息,可有效地用于对农作物种植信息的提取与挖掘。Rama等[13]采用HyMap航空高光谱图像对5种作物信息进行提取,精度达82%。
随着微波遥感技术的发展,雷达数据也应用于农业遥感领域。Xavier等[14]使用雷达图像和光学图像,在柏林的中西部基于地块数据进行分层分类和嵌套分类,研究结果肯定了雷达图像对作物的识别能力。
在作物信息提取模型方面,由传统的监督分类发展到神经网络等其他分类方法。Murthy等[16]使用印度遥感卫星数据IRS-1B图像,采用2种最大似然算法及基于反向传播算法的人工神经网络(ANN)方法提取冬小麦种植信息,最终结果表明人工神经网络方法优于最大似然算法。
2 国内研究现状
国内应用遥感技术进行冬小麦估产始于1981年,一些学者近年来先后进行了黄淮海平原和京津冀地区的小麦遥感估产以及全国主要作物的遥感调查等研究[5]。目前,国内冬小麦种植面积提取的遥感方法主要可分为5类:目视解译与计算机自动分类、面向像元分类、基于地块分类、遥感解译模型分类和基于纹理特征分类。
2.1 目视解译与计算机自动分类
计算机自动分类适用于分辨率较低的遥感图像,包括非监督分类与监督分类。
2.1.1 非监督分类
邹金秋等[17]基于 MOIDS EVI数据,选取冬小麦生长过程中关键的分蘖期和抽穗期进行非监督分类,得到冬小麦的种植面积,精度达96%;并得出提取冬小麦种植面积的最佳时相和最佳波段组合。李寄等[18]利用非监督分类方法对时间序列 MODIS NDVI图像进行植被指数的分级处理,得到全省的冬小麦种植面积分布百分比图,精度达99.67%。非监督分类法省时省力,对中、高分辨率遥感图像分类精度较高,可以快速地提取冬小麦种植面积,但分类后处理需要用人的知识和经验干预。
2.1.2 监督分类
张群等[19]对3个时相的Landsat TM数据进行监督分类,研究多年来冬小麦种植面积的变化趋势;韩素芹等[20]运用监督分类的最大似然法对MODIS图像进行分类,得到天津市冬小麦统计面积及分布图,分类精度达90%。采用监督分类法提取冬小麦种植面积过程中,遥感图像的最佳时相选择对提高分类精度至关重要。
2.2 面向像元分类
面向像元的分类方法包括基于像元分类和基于亚像元分类2种。基于像元的分类是传统分类方法,分类过程中处理的最小单元是像元,通过对遥感图像中各波段像元的光谱亮度值或反射率值进行计算,设定阈值,得到分类结果;基于亚像元的分类则进入像元内部,将包含不同地物类型的混合像元分解为不同的“端元”(endmember),并求得每个像元内各个端元所占的比例[21]。
2.2.1 基于像元分类
武永利等[22]基于 FY-3A MERSI数据,采用神经网络方法提取山西省南部冬小麦种植面积,精度达81.53%。刘磊等[23]基于 Landsat TM 数据、利用光谱角制图分类法对呼伦贝尔地区农业种植区的冬小麦进行提取,精度达86.9%。行晓黎等[24]和李苓苓等[25]均采用环境减灾卫星数据、基于支持向量机二分法的分类后验概率空间变化向量分析法进行冬小麦提取,精度达到预期目标。基于像元的分类是直接的分类方法,在冬小麦种植面积提取过程中,对于种植结构单一(仅冬小麦)且冬小麦分布广的区域,冬小麦提取的精度较高;但对于冬小麦分布分散、地形复杂的地区,冬小麦提取的精度有待提高。
2.2.2 基于亚像元分类
由于目前常用传感器的空间分辨率的限制,加之我国目前的耕地现状为田块分布较破碎、作物类别多样,因此一个像元内会包含不同的土地覆盖类型,混合像元较多[26];而大多数图像分类中并未考虑混合像元的问题,使得混合像元中所占面积比例较小的地物被误分到其他类别中,因而降低了地物面积估算精度[27]。混合像元分解法可以解决因混合像元归属问题而产生的错分、误分问题[28]。目前,国内外学者常用的混合像元分解模型包括线性模型、几何光学模型及概率模型等,其中线性光谱混合模型因方法构造简单、物理含义明确、操作运算比较简单、便利并且能够满足精度要求,而被广泛应用于混合像元分解中[27]。线性分解模型的原理是将图像中每一个像元点的反射率值看作是由组成该像元各地物纯净像元反射率的线性组合,并把其中每种地物类别在该像元内所占的面积比作为线性方程的权重系数[29]。
MODIS数据具有中等空间分辨率、高时间分辨率的特点,采用混合像元分解方法可以弥补其空间分辨率的不足,而高时间分辨率在监测冬小麦整个生长周期内光谱特征的变化具有优势,所以混合像元分类法提取冬小麦种植面积多采用MODIS图像数据。许文波等[30]采用MODIS数据,通过线性光谱混合模型得到河南省冬小麦种植面积,总体精度为94.75%;蔡薇等[29]以山东省菏泽市曹县为研究区,基于MODIS数据采用混合像元分解提取冬小麦种植面积,分类精度达98.6%;武永利等[31]基于MODIS数据采用混合像元分解方法提取山西运城市冬小麦种植面积,精度达95.1%;刘茜等[32]分别采用监督分类法、K-T变换法及混合像元分解法计算冬小麦种植面积,最终结果说明采用混合像元分解法估算的冬小麦面积最接近利用航空图像监测得到的。混合像元分解法中端元的选择是关键,不当的端元选择会导致不稳定解、噪声和不正确的丰度图像,因此端元的选择决定着分类的精度。
2.3 基于地块分类
目前,利用GIS地块数据的分类方法和面向对象的分类方法是逐块分类方法的2大研究方向[33]。
2.3.1 利用GIS地块数据分类
地块数据具有明显的边界和明确的位置,在一定程度上光谱差异和混合像元的复杂程度有所降低。因此,与基于像元的分类相比,基于地块的分类具有更高的精度和稳定性[34]。李乐等[33]建立MODIS-NDVI数据与TM耕地地块识别结果的定量关系,进行MODIS-NDVI时间序列下基于地块的冬小麦种植面积测量,该方法证明了地块数据可有效地改善因空间分辨率低导致的MODIS-NDVI时序数据在冬小麦遥感识别中引起的误差;朱长明等[35]利用数据融合后的高空间分辨率SPOT5遥感图像提取农田地块专题信息,在地块专题层控制下提取冬小麦种植面积,精度达90%以上。利用基于GIS的地块数据进行冬小麦种植信息提取,可以避免因遥感图像空间分辨率低而产生的边界问题,将耕地以外的植被信息排除,则可以弥补直接进行冬小麦分类的不足。
2.3.2 面向对象的分类
基于像元的分类以单个像元为基本单位进行信息提取,存在忽略地物几何结构特征的情况,并且在分类结果中“椒盐”现象普遍,而混合像元分类方法中端元的选择和组合又成为难点。面向对象的分类方法是基于目标对象的分类方法,其基本原理是首先根据设定的阈值对图像像元进行合并和分割,形成目标对象;进而对其进行分类,分类时不仅依靠地物的光谱特性,更多的是根据目标对象的上下文、空间、纹理等结构信息和几何特征,把具有相同规则的目标对象归为一类[5]。面向对象分类法在分类过程中集成了专家知识和多种辅助数据,更符合人们认知地理客体的规律。面向对象分类法与面向像元分类法最大的区别在于前者是基于图像的对象或基元,而后者是基于单个像元[33]。范磊等[5]应用面向对象方法,对遥感图像进行多尺度分割,提取冬小麦种植面积及空间分布,精度达94.06%;李卫国等[3]以江苏省的3个城市为研究区,基于 Landsat TM数据、采用面向对象分类法对冬小麦面积进行提取,分类精度达 94.16%;王启田等[33]采用 TM数据,通过易康(eCognition)软件对研究区采取面向对象分类方法,得到冬小麦种植面积及其分布信息,精度为95.58%;张建国等[36]以山东省恒台县为研究区,基于ETM+数据,通过图像分割和基于知识的面向对象分类方法提取研究区冬小麦面积,精度达99.5%。用面向对象分类法进行冬小麦种植面积提取时,将冬小麦归为一个对象,从而避免了一般直接分类结果中的“椒盐”现象;但因图像分割的尺度问题,有可能将田间小道、房屋等分类为冬小麦,造成冬小麦分类结果的面积增大,若能解决好图像分割尺度问题,便可进一步提高冬小麦提取精度。
2.4 遥感解译模型分类
遥感解译的本质是遥感分类,遥感解译模型就是通过分析、识别不同作物在遥感图像中表现出不同的光谱、纹理等影像特征,达到区分作物类别、监测作物空间分布格局和提取作物种植面积的目标[37]。在冬小麦种植面积提取的遥感方法研究中,常用到的解译模型包括基于NDVI阈值建立的模型及决策树模型;此外,GIS辅助数据的引用也为冬小麦种植面积监测提供了新的思路。
2.4.1 NDVI阈值法
植被指数可以定性和定量地评价植被生物量、生长活力及植被覆盖度等,常见的植被指数有归一化差值植被指数NDVI、差值植被指数、比值植被指数等[21]。国内很多学者将2期或多期NDVI图像做简单运算(相减或相除),通过设定适当的阈值提取冬小麦种植面积信息,得到较高的精度[38-41]。还有一些学者在分析冬小麦生长期内物候特征的基础上,根据几个关键期冬小麦NDVI阈值的变化建立规则,得到冬小麦的提取模型,精度均在90%以上[42-46]。NDVI阈值法充分利用了冬小麦生长期内几个关键时期在遥感图像中反映的特殊光谱特征,加大冬小麦与其他地物的差异,提高冬小麦提取精度;但对图像的选择要求较高,一般需要使用时间分辨率较高的遥感图像(如MODIS数据、HJ减灾小卫星数据等)。
2.4.2 决策树分类法
决策树分类法具有分类结构直观、运算效率高等优点[47],大多以“二类判别”为基础,通过分层、逐次比较,最后达到分类的目的。冯美臣等[49]采用TM图像,通过搭建决策树结构进行不同灌溉类型冬小麦种植面积的提取,分别得到了水地冬小麦和旱地冬小麦的种植面积,2种耕地类型的冬小麦提取精度分别为86.15%和86.16%;赵晶晶等[50]选取2个时期的MODIS-NDVI图像,采用决策树方法设定NDVI阈值、提取冬小麦种植面积,总体分类精度达87.2%;张健康等[37]运用多时相TM/ETM+数据和MODIS EVI数据,建立决策树识别模型,对黑龙港地区冬小麦种植信息进行提取,总体分类精度达91.3%;秦元伟等[51]在分析研究区典型地物光谱特征的基础上,采用决策树分类方法提取冬小麦种植面积,分类精度在96%以上。决策树分类法通过不同地物在遥感图像某个波段的差异,引入GIS数据或气象数据等,进行目标地物提取;有效的判别规则是决策树分类法提取冬小麦种植面积的关键;但对某些光谱特征或空间特征相似的地物,还需要辅以其他分类方法。
2.4.3 GIS 辅助数据法
在使用单一遥感数据监测冬小麦种植信息的同时,若再分析冬小麦与其生长环境的关系,并加入GIS数据辅助分析,则可以为利用遥感图像提取冬小麦种植面积提供新的思路。王来刚等[52]根据冬小麦的种植区划对研究区进行分区,在分区的前提下根据地形地貌因素、种植结构差异和遥感图像受大气噪声影响的程度等3方面因素再进行细分分区,基于我国环境减灾卫星图像,通过遥感分类提取出冬小麦的种植信息;贾建华等[53]基于地形高度对地物光谱反射值的影响,借助DEM数据对研究区域进行划分,在分析研究区主要农作物时间谱曲线特征的基础上,成功地提取出冬小麦种植面积。GIS与RS的结合是3S技术发展的方向,GIS辅助数据的引入为冬小麦种植面积在空间上的判别提供了依据。
2.5 基于纹理特征分类
单纯的光谱分类器只考虑图像的光谱特征,但自然界存在大量“同物异谱”与“异物同谱”现象,而地物都是具有一定空间结构特征和纹理特征的。因此,利用地物的空间特征和纹理特征的差异,可以比较容易地区分地物类型,而只利用单纯的光谱信息则不一定能很好地区分不同地物。利用不同的定量化方法计算地物的纹理特征并应用于地物分类中,已得到许多人的提倡[21]。顾晓鹤等[54]采用 TM 图像、引入纹理信息对冬小麦种植面积进行估算,结果证明纹理信息的引入有助于进一步提高地块分类的精度;朱秀芳等[55]选取7种纹理信息和5种植被指数信息分别加入到TM多光谱数据中,结果表明同一种信息特征对不同分类器的响应是不同的;张楠楠[56]则将农作物的物候特征、光谱特征和纹理特征纳入作物种植结构的遥感监测和分析,识别冬小麦。
3 讨论与展望
近年来,随着卫星遥感技术的发展,国内外对冬小麦种植面积遥感提取方面的研究越来越多,除了研究提取方法外,很多学者还对冬小麦提取过程中的数据选择及精度保证等方面的问题进行了研究,并提出实验基础与理论依据。齐腊等[57]采用中巴资源卫星CBERS-02数据对用遥感方法提取冬小麦的最佳时相进行了探讨;何浩等[58]用SPOT5数据进行了尺度变化对农作物测量精度影响的分析,从不同空间分辨率、不同空间范围和不同农作物百分比等角度分析了农作物种植面积在遥感测量中的尺度效应。在此基础上,笔者认为在以下几方面还有待于更深入地探讨与研究:
1)地形复杂、耕地破碎度较高地区的冬小麦种植信息提取。鉴于传感器分辨力以及研究尺度等问题,很多冬小麦的遥感提取方法将研究区视为一个整体对象进行监测,但很多对耕地大范围分布且为平原的地区监测精度高的方法并不适用于地形复杂或耕地破碎度高的地区。因此,对后一种地区进行深入研究十分必要,只有高分辨率遥感图像的应用可以提高这部分地区作物面积提取精度。同样,对于种植结构复杂的地区,多种作物间作套种,要把每种作物正确地识别出来,利用高分辨率遥感图像是一个便捷而有效的办法,但其可获取性及时间分辨率仍是一个需要解决的问题。
2)基于行政区划或作物种植模式的研究区划分。依据行政区划或作物种植模式对研究区进行划分,各分区针对本区的特点采用不同的遥感模型进行作物种植信息提取。这种分区提取的方法需要与GIS数据和其他辅助数据相结合,GIS数据可以提供冬小麦种植区丰富的地理信息;气象数据可提供冬小麦生长环境的气象条件,将GIS、气象与遥感数据进行有效整合,可以为冬小麦种植信息的提取提供一个新的思路。
3)多源、多时相遥感图像的综合应用。综合应用多源、多时相遥感数据,采用数据融合技术提高遥感图像的时间和空间分辨率,结合图像的纹理特征信息对冬小麦种植面积进行提取,是冬小麦种植信息遥感监测的一个发展方向。
4)冬小麦及其周围地物光谱测量数据的综合应用。结合冬小麦及其周围地物的地面光谱测量数据分析冬小麦的光谱特征信息,采用高光谱图像数据对冬小麦种植信息进行提取,是目前国内研究较少的方法,其原因可能是:①典型区域地面光谱测量需要一定人力物力,实施起来不容易;②目前高光谱图像的获取有一定难度,尤其在特殊时期及指定地区。
5)遥感监测结果的验证。在目前大部分研究中,冬小麦种植面积遥感提取结果多采用统计数据进行验证,而统计数据本身的精度并不能得到保证;并且统计数据只能验证面积估算总数,并不能对遥感监测的冬小麦分布位置加以验证。建议在研究区选取典型样区,对冬小麦的地面分布情况进行测量(包括点和面的冬小麦分布测量),并且保证一定的数量,这样对冬小麦种植信息遥感监测结果的验证会更加精确,在一定程度上也会相对地提高冬小麦的遥感提取精度。
4 结论
1)在对国内、外相关资料调研的基础上,本文归纳总结了国内遥感提取冬小麦种植面积主要采取的5类方法,即目视解译与计算机自动分类、面向像元分类,基于地块分类、遥感解译模型分类和基于纹理特征分类。介绍了每一类中的各种方法的原理和特点,列举了上述方法目前取得的成果,并对每一种方法进行了评价,对今后用遥感方法提取冬小麦种植面积的研究提供参考。
2)针对国内的研究现状,笔者指出了如何突破目前技术发展瓶颈的方法和措施。采用高空间分辨率图像,将遥感图像、GIS与气象数据有效整合,多源、多时相遥感图像综合应用,冬小麦及其周围地物光谱测量数据与高光谱图像数据的综合应用等,是提高冬小麦种植面积遥感提取精度的发展方向;另外,采用地面测量冬小麦分布数据取代统计数据对遥感提取结果进行验证,也会相对地提高冬小麦的遥感提取精度。
3)本文所讨论的冬小麦种植面积遥感提取方法多用于以省、市、县范围为研究区的地区,但中国地域辽阔,北方与南方冬小麦区的冬小麦种植模式并不相同,对于全国范围的冬小麦种植面积遥感提取方法的归纳总结,本文并未涉及。其原因是有关全国范围冬小麦种植面积提取的相关资料并不多,大多采用遥感监测与抽样外推相结合的方法,单纯采用遥感方法提取一来精度无法满足,二来遥感图像等数据获取有难度。这是本文的不足之处,但也是冬小麦种植面积遥感提取技术未来发展的方向之一。
[1]陈水森,柳钦火,陈良富,等.粮食作物播种面积遥感监测研究进展[J].农业工程学报,2005,21(6):166-171.Chen S S,Liu Q H,Chen L F,et al.Review of research advances in remote sensing monitoring of grain crop area[J].Transactions of the Chinese Society of Agricultural Engineering,2005,21(6):166-171.
[2]赵 莲,张锦水,胡潭高,等.变端元混合像元分解冬小麦种植面积测量方法[J].国土资源遥感,2011,23(1):66-72.Zhao L,Zhang J S,Hu T G,et al.The application of the dynamic endmember linear spectral unmixing model to winter wheat area estimation[J].Remote Sensing for Land and Resources,2011,23(1):66-72.
[3]李卫国,蒋 楠.基于面向对象分类的冬小麦种植面积提取[J].麦类作物学报,2012,32(4):701-705.Li W G,Jiang N.Extraction of winter wheat planting area by object- oriented classification method[J].Journal of Triticeae Crops,2012,32(4):701-705.
[4]黄 青,李丹丹,陈仲新,等.基于MODIS数据的冬小麦种植面积快速提取与长势监测[J].农业机械学报,2012,43(7):163-167.Huang Q,Li D D,Chen Z X,et al.Monitoring of planting area and growth condition of winter wheat in China based on MODIS data[J].Transactions of the Chinese Society for Agricultural Machinery,2012,43(7):163-167.
[5]范 磊,程永正,王来刚,等.基于多尺度分割的面向对象分类方法提取冬小麦种植面积[J].中国农业资源与区划,2010,31(6):44-51.Fan L,Cheng Y Z,Wang L G,et al.Estimation of winter wheat planting area using object-oriented method based on multi-scale segmentation[J].Chinese Journal of Agricultural Resources and Regional Planting,2010,31(6):44-51.
[6]刘海启,金敏毓,龚维鹏.美国农业遥感技术应用状况概述[J].中国农业资源与区划,1999,20(2):56-60.Liu H Q,Jin M Y,Gong W P.Applications of remote sensing in agriculture in the United States[J].Chinese Journal of Agricultural Resources and Regional Planting,1999,20(2):56-60.
[7]刘海启.欧盟MARS计划简介与我国农业遥感应用思路[J].中国农业资源与区划,1999,20(3):55-57.Liu H Q.The introduction of MARS plan of European commission and Chinese agriculture remote sensing application[J].Chinese Journal of Agricultural Resources and Regional Planting,1999,20(3):55-57.
[8]Julien Y,Sobrino J A,Jiménez- Mun~oz J C.Land use classification from multitemporal Landsat imagery using the yearly land cover dynamics(YLCD)method[J].International Journal of Applied Earth Observation and Geoinformation,2011,13(5):711-720.
[9]Quarmby N A,Milnes M,Hindle T L,et al.The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction[J].International Journal of Remote Sensing,1993,14(2):199-210.
[10]Quarmby N A,Townshend J R G,Settle J J,et al.Linear mixture modeling applied to AVHRR data for crop area estimation[J].International Journal of Remote Sensing,1992,13(3):415-425.
[11]Turner M D,Congalton R G.Classification of multitemporal SPOT-XS satellite data for mapping rice fields on a West African flood plain[J].International Journal of Remote Sensing,1998,19(1):21-41.
[12]Kontoes C,Wilkinson G G,Burril A,et al.An experimental system for the integration of GIS data in knowledge based image analysis for remote sensing of agriculture[J].International Journal of Geographical Information Systems,1993,7(3):247-262.
[13]Nidamanuri R R,Zbell B.Transferring spectral libraries of canopy reflectance for crop classification using hyperspectral remote sensing data[J].Biosystems Engineering,2011,110(3):231-246.
[14]Xavier B,Laurent V,Pierre D.Efficiency of crop identification based on optical and SAR image time series[J].Remote Sensing of Environment,2005,96(3/4):352- 365.
[15]Inzana J,kusky T,Higgs G,et al.Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar[J].Journal of African Earth Sciences,2003,37(1-2):59-72.
[16]Murthy C S,Raju P V,Badrinath K V S.Classification of wheat crop with multi-temporal images:Performance of maximum likelihood and artificial neural networks[J].International Journal of Remote sensing,2003,24(23):4871-4890.
[17]邹金秋,陈佑启,Uchida S,等.利用Terra/MODIS数据提取冬小麦面积及精度分析[J].农业工程学报,2007,23(11):195-200.Zou J Q,Chen Y Q,Uchida S,et al.Method for extracting winter wheat area using Terra/MODIS data andits accuracy analysis[J].Transactions of the Chinese Society of Agricultural Engineering,2007,23(11):195-200.
[18]李 寄,黄进良,许文波.湖北省冬小麦种植面积遥感估算方法研究[J].世界科技研究与发展,2008,30(5):597-599.Li J,Huang J L,Xu W B.Study on method of estimating the winter wheat acreage using remote sensing of Hubei Province[J].World Sci- tech Research and Development,2008,30(5):597-599.
[19]张 群,胡春胜,陈素英,等.多时相遥感影像监测冬小麦种植面积的变化研究——以河北省三河市与大厂回族自治县为例[J].中国生态农业学报,2006,14(3):180-183.Zhang Q,Hu C S,Chen S Y,et al.Changes of winter wheat planting area detected by using multitemporal remote sensing images:A case study from Sanhe City and Hui Autonomous County of Dachang of Hebei Province[J].Chinese Journal of Eco- Agriculture,2006,14(3):180-183.
[20]韩素芹,刘淑梅.EOS/MODIS卫星资料在监测冬小麦面积中的应用[J].天津农学院学报,2004,11(2):26-28.Han S Q,Liu S M.Application of MODIS data to monitor winter wheat acreage in Tianjin[J].Journal of Tianjin Agricultural College,2004,11(2):26-28.
[21]赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.Zhao Y S.The principle and method of analysis of remote sensing application[M].Beijing:Science Press,2003.
[22]武永利,赵永强,靳 宁,等.单时相MERSI数据在冬小麦种植面积监测中的应用[J].中国农学通报,2011,27(14):127-131.Wu Y L,Zhao Y Q,Jin N,et al.Monitoring of winter wheat area based on mono temporal MERSI data[J].Chinese Agricultural Science Bulletin,2011,27(14):127-131.
[23]刘 磊,江 东,徐 敏,等.基于多光谱影像和专家决策法的作物分类研究[J].安徽农业科学,2011,39(25):15809-15811.Liu L,Jiang D,Xu M,et al.Crops classification based on multispectral image and decision tree method[J].Journal of Anhui Agricultural Sciences,2011,39(25):15809-15811.
[24]行晓黎,许明魁,唐诗华,等.基于环境减灾卫星的遥感技术在农业统计中的应用——以北京冬小麦为例[J].城市勘测,2010,12(6):76-78.Xing X L,Xu M K,Tang S H,et al.Based on the environmental disaster mitigation satellite technology of remote sensing in agricultural application:Take the Beijing wheat as an example[J].Urban Geotechnical Investigation and Surveying,2010,12(6):76-78.
[25]李苓苓,潘耀忠,张锦水,等.支持向量机与分类后验概率空间变化向量分析法相结合的冬小麦种植面积测量方法[J].农业工程学报,2010,26(9):210-217.Li L L,Pan Y Z,Zhang J S,et al.Method of winter wheat planting area estimation based on support vectormachine and post-classification changed vector analysis[J].Transactions of the Chinese Society of Agricultural Engineering,2010,26(9):210-217.
[26]李晓松,吴 波,范文义,等.基于光谱混合分析的荒漠化信息提取——以毛乌素沙地为例[J].林业科学研究,2006,19(2):192-198.Li X S,Wu B,Fan W Y,et al.Extraction of desertification information based on SMA:A case study in Mu Us sandland[J].Forest Research,2006,19(2):192-198.
[27]张 军.基于MODIS遥感数据的山东省济宁市冬小麦面积估算研究[D].南京:南京大学,2012.Zhang J.Estimation of winter wheat area in Jining City,Shandong Province with MODIS remote sensing data[D].Nanjing:Nanjing University,2012.
[28]李 素,李文正,周建军,等.ETM+影像亚像元级城市土地覆盖组分丰度提取——以南京市为例[J].地理与地理信息科学,2008,24(2):17-22.Li S,Li W Z,Zhou J J,et al.Urban land cover composition abundance extraction of sub-pixel level based on ETM+image:A case study of Nanjing[J].Geography and Geo- Information Science,2008,24(2):17-22.
[29]蔡 薇,郭洪海,隋学艳,等.基于混合像元分解提取小麦种植面积的技术与方法研究[J].山东农业科学,2009(5):12-16.Cai W,Guo H H,Sui X Y,et al.Technology and method study for extracting wheat planting area based on mixed-pixel decomposition[J].Shandong Agricultural Sciences,2009(5):12-16.
[30]许文波,张国平,范锦龙,等.利用MODIS遥感数据监测冬小麦种植面积[J].农业工程学报,2007,23(12):144-149.Xu W B,Zhang G P,Fan J L,et al.Remote sensing monitoring of winter wheat areas using MODIS data[J].Transactions of the Chinese Society of Agricultural Engineering,2007,23(12):144-149.
[31]武永利,王云峰,张建新,等.应用线性混合模型遥感监测冬小麦种植面积[J].农业工程学报,2009,25(2):136-140.Wu Y L,Wang Y F,Zhang J X,et al.Linear mixture modeling applied to remote sensing monitoring of winter wheat areas[J].Transactions of the Chinese Society of Agricultural Engineering,2009,25(2):136-140.
[32]刘 茜,徐希孺.航空影像与TM影像的配准及用航空影像对TM进行作物估产方法的精度检验[J].环境遥感,1994,9(4):272-279.Liu Q,Xu X R.Matching of airphotos with TM images and precision testing of crop area estimation by means of TM using airphotos[J].Remote Sensing of Environment China,1994,9(4):272-279.
[33]李 乐,张锦水,朱文泉,等.地块支持下MODIS-NDVI时间序列冬小麦种植面积测量研究[J].光谱学与光谱分析,2011,31(5):1379-1383.Li L,Zhang J S,Zhu W Q,et al.Winter wheat area estimation with MODIS- NDVI time series based on parcel[J].Spectroscopy and Spectral Analysis,2011,31(5):1379-1383.
[34]王启田,林祥国,王志军,等.利用面向对象分类方法提取冬小麦种植面积的研究[J].测绘科学,2008,33(2):143-146.Wang Q T,Lin X G,Wang Z J,et al.Extraction of winter wheat planting area by object- oriented classification method[J].Science of Surveying and Mapping,2008,33(2):143-146.
[35]朱长明,骆剑承,沈占锋,等.基于地块特征基元与多时相遥感数据的冬小麦播种面积快速提取[J].农业工程学报,2011,27(9):94-99.Zhu C M,Luo J C,Shen Z F,et al.Winter wheat planting area extraction using multi-temporal remote sensing data based on filed parcel characteristic[J].Transactions of the Chinese Society of Agricultural Engineering,2011,27(9):94-99.
[36]张建国,李宪文,吴延磊.面向对象的冬小麦种植面积遥感估算研究[J].农业工程学报,2008,24(5):156-160.Zhang J G,Li X W,Wu Y L.Object oriented estimation of winter wheat planting area using remote sensing data[J].Transactions of the Chinese Society of Agricultural Engineering,2008,24(5):156-160.
[37]张健康,程彦培,张发旺,等.基于多时相遥感影像的作物种植信息提取[J].农业工程学报,2012,28(2):134-141.Zhang J K,Cheng Y P,Zhang F W,et al.Crops planting information extraction based on multi-temporal remote sensing images[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(2):134-141.
[38]王茂新,裴志远,吴 全,等.用NOAA图像监测冬小麦面积的方法研究[J].农业工程学报,1998,14(3):84-88.Wang M X,Pei Z Y,Wu Q,et al.Winter- wheat sown area estimation using NOAA- AVHRR data[J].Transactions of the Chinese Society of Agricultural Engineering,1998,14(3):84-88.
[39]王云峰,沈润平.基于MODIS数据的丘陵地区冬小麦种植面积提取研究[J].安徽农业科学,2009,37(33):16694-16696.Wang Y F,Shen R P.Study on the planting area extraction of winter wheat based on MODIS data[J].Journal of Anhui Agricultural Sciences,2009,37(33):16694-16696.
[40]王云峰,沈润平,田国珍.基于MODIS数据光谱突变法提取冬小麦种植面积研究[J].内蒙古气象,2009(6):18-21.Wang Y F,Shen R P,Tian G Z.Study on extracting winter wheat planting area based on MODIS data by spectral mutation[J].Meteorology Journal of Inner Mongolia,2009(6):18-21.
[41]竞 霞,刘良云,张 超,等.利用多时相NDVI监测京郊冬小麦种植信息[J].遥感技术与应用,2005,20(2):238-242.Jing X,Liu L Y,Zhang C,et al.Monitoring planting information of Beijing winter wheat utilizing multi- temporal NDVI[J].Remote Sensing Technology and Application,2005,20(2):238-242.
[42]黄 青,吴文斌,邓 辉,等.2009年江苏省冬小麦和水稻种植面积信息遥感提取及长势监测[J].江苏农业科学,2010(6):508-511.Huang Q,Wu W B,Deng H,et al.Extraction of winter wheat and rice planting area and growing monitoring using remote sensing method in Jiangsu Province 2009[J].Jiangsu Agricultural Sciences,2010(6):508-511.
[43]杨小唤,张香平,江 东.基于MODIS时序NDVI特征值提取多作物播种面积的方法[J].资源科学,2004,26(6):17-22.Yang X H,Zhang X P,Jiang D.Extraction of multi-crop planting areas from MODIS data[J].Resources Science,2004,26(6):17-22.
[44]乔红波,张 慧,程登发.不同时序EOS/MODIS-NDVI监测河南省冬小麦面积[J].安徽农业科学,2008,36(27):11940-11941.Qiao H B,Zhang H,Cheng D F.Application of EOS/MODIS-NDVI at different time sequences on monitoring winter wheat acreage in Henan Province[J].Journal of Anhui Agricultural Sciences,2008,36(27):11940-11941.
[45]康凌艳,雷玉平,郑 力,等.在GIS支持下利用MODIS数据监测多种作物和果树种植面积[J].遥感技术与应用,2007,22(3):361-366.Kang L Y,Lei Y P,Zheng L,et al.Vegetation classification based on MODIS data and the accuracy evaluation in the pixel scale[J].Remote Sensing Technology and Application,2007,22(3):361-366.
[46]李 颖,陈秀万,段红伟,等.多源多时相遥感数据在冬小麦识别中的应用研究[J].地理与地理信息科学,2010,26(4):47-49.Li Y,Chen X W,Duan H W,et al.Application of multi- source and multi-temporal remote sensing data in winter wheat identification[J].Geography and Geo- Information Science,2010,26(4):47-49.
[47]王正海,张红军.SAM和决策树结合的Hyperion数据分类方法[J].武汉科技大学学报:自然科学版,2006,29(5):478-481.Wang Z H,Zhang H J.A classification model for remote sensing images based on SAM and decision tree[J].Journal of Wuhan U-niversity of Science and Technology,2006,29(5):478-481.
[48]韩 涛,李耀辉,郭 铌.基于EOS/MODIS资料的沙尘遥感监测模型研究[J].高原气象,2005,24(5):757-764.Han T,Li Y H,Guo N.Research on dust storm monitoring model based on EOS/MODIS data[J].Plateau Meteorology,2005,24(5):757-764.
[49]冯美臣,杨武德,张东彦,等.基于TM和MODIS数据的水旱地冬小麦面积提取和长势监测[J].农业工程学报,2009,25(3):103-109.Feng M C,Yang W D,Zhang D Y,et al.Monitoring planting area and growth situation of irrigation-land and dry-land winter wheat based on TM and MODIS[J].Transactions of the Chinese Society of Agricultural Engineering,2009,25(3):103-109.
[50]赵晶晶,刘良云,徐自为,等.华北平原冬小麦总初级生产力的遥感监测[J].农业工程学报,2011,27(增1):346-351.Zhao J J,Liu L Y,Xu Z W,et al.Monitoring winter wheat GPP in Huabei Plain using remote sensing and flux tower[J].Transactions of the Chinese Society of Agricultural Engineering,2011,27(s1):346-351.
[51]秦元伟,赵庚星,姜曙千,等.基于中高分辨率卫星遥感数据的县域冬小麦估产[J].农业工程学报,2009,25(7):118-123.Qin Y W,Zhao G X,Jiang S Q,et al.Winter wheat yield estimation based on high and moderate resolution remote sensing data at county level[J].Transactions of the Chinese Society of Agricultural Engineering,2009,25(7):118-123.
[52]王来刚,郑国清,陈怀亮,等.基于HJ-CCD影像的河南省冬小麦种植面积变化全覆盖监测[J].中国农业资源与区划,2011,32(2):58-62.Wang L G,Zheng G Q,Chen H L,et al.Monitoring the change of global winter wheat planting area in Henan Province based on HJ- CCD image[J].Chinese Journal of Agricultural Resources and Regional Planning,2011,32(2):58-62.
[53]贾建华,刘良云,竞 霞,等.基于多时相MODIS监测冬小麦的种植面积[J].遥感信息,2005(6):49-51.Jia J H,Liu L Y,Jing X,et al.Monitoring planting area of winter wheat based on multi- temporal MODIS images[J].Remote Sensing Information,2005(6):49-51.
[54]顾晓鹤,潘耀忠,何 馨,等.以地块分类为核心的冬小麦种植面积遥感估算[J].遥感学报,2010(4):789-805.Gu X H,Pan Y Z,He X,et al.Measurement of sown area of winter wheat based on per-field classification and remote sensing imagery[J].Journal of Remote Sensing,2010(4):789-805.
[55]朱秀芳,贾 斌,潘耀忠,等.不同特征信息对TM尺度冬小麦面积测量精度影响研究[J].农业工程学报,2007,23(9):122-129.Zhu X F,Jia B,Pan Y Z,et al.Effects of various feature information on the accuracy of winter wheat planting area measurement[J].Transactions of the Chinese Society of Agricultural Engineering,2007,23(9):122-129.
[56]张楠楠.黄河中下游引黄灌区作物种植结构的遥感监测方法研究[D].阜新:辽宁工程技术大学,2008.Zhang N N.Research of remote sensing monitoring for the crops planting structure in an irrigation district along the lower Yellow River[D].Fuxin:Liaoning Technical University,2008.
[57]齐 腊,赵春江,李存军,等.基于多时相中巴资源卫星影像的冬小麦分类精度[J].应用生态学报,2008,19(10):2201-2208.Qi L,Zhao C J,Li C J,et al.Accuracy of winter wheat identification based on multi- temporal CBERS- 02 images[J].Chinese Journal of Applied Ecology,2008,19(10):2201-2208.
[58]何 浩,朱秀芳,潘耀忠,等.尺度变化对冬小麦种植面积遥感测量区域精度影响的研究[J].遥感学报,2008,12(1):168-175.He H,Zhu X F,Pan Y Z,et al.Study on scale issues in measurement of winter wheat plant area by remote sensing[J].Journal of Remote Sensing,2008,12(1):168-175.