APP下载

电力科技信息

2013-01-26

浙江电力 2013年10期
关键词:李丹能带电容器

美用黏土开发高温超级电容器几秒充电瞬间放电

据物理学家组织网9月3日报道,美国莱斯大学科学家用黏土和一种电解液混合,开发出既能当电解液又能当隔离板使用的“复合板”,可作为新型高温超级电容器。相关论文在线发表于9月3日的《自然·科学报告》上。

“多年来,研究人员一直想造出像电池和超级电容器这样能在高温环境下稳定工作的能源存储设备,但由于传统材料本身性质的制约,一直未能攻克难题。”莱斯大学材料科学家帕里柯·阿加恩说,“我们的革新是找到了一种能在高温下保持稳定的、非传统的电解质/隔离板系统。”

他们研究了欧洲和奥地利科学家于2009年开发的一种室温离子液(RTILs)。RTILs在室温下导电性较低,但加热后黏度会降低而导电性提高。黏土具有很高的热稳定性、吸附能力和渗透性,活性表面积也很大。研究人员把RTILs和自然界的斑脱土黏土等量混合,制成一种混合胶,将其夹在2层还原的氧化石墨中间,上下再装两个集电器,就成了一种超级电容器。经测试和电子显微图像显示,这种材料被加热到200℃时也没有变化,即使加热到300℃也只有很小的变化。

“材料的离子电导性在180℃之前几乎是直线增加,然后在200℃时达到饱和。”论文领导作者、莱斯大学机械工程与材料科学系研究人员阿拉瓦·瑞迪说。测试还发现,虽然在第一次充/放电中,其容量有轻微下降,但这种超级电容能稳定地通过1万次周期测试。在运行温度从室温提高到200℃后,无论电能还是功率密度都提高了2个数量级。

这种新型超级电容器拥有最佳的电容性能,能在几秒钟内充电而瞬间放电,一般的充电电池是缓慢充电,按照需要逐渐放电。理想的超级电容器能迅速充电、储电并按需放电。阿加恩说,它们能在200℃甚至可能更高的温度下稳定工作。这对于在极端环境下使用的充电设备是非常有用的,比如石油钻探、军队以及太空环境。

研究小组还将RTILs/黏土和少量热塑聚氨酯结合,制成一种薄膜,可以切割成不同的大小和形状,灵活适应多种设备的设计。

“我们的目的是克服传统液体或胶体电解液的限制,它们只能用在低温工作的电化能源设备中。”瑞迪说,“这项研究让人们能在更广泛的温度范围安全操作,而不必在能量、功率和周期寿命之间折中妥协,大大改善甚至消除了对昂贵的热量管理系统的需求。”

来源:科技日报

美证实二维半导体存在普适吸光规律

以往的研究表明,二维碳薄片石墨烯拥有一个通用的光吸收系数。现在,美国能源部劳伦斯伯克利国家实验室的科学家首次证实,所有的二维半导体也同样普遍适用于一个类似的简单吸光规律。他们利用超薄半导体砷化铟薄膜进行的实验发现,所有的二维半导体,包括受太阳能薄膜和光电器件行业青睐的Ⅲ-Ⅴ族化合物半导体,都有一个通用的吸收光子的量子单位,他们称之为“AQ”。相关研究论文发表在美国《国家科学院学报》上。

许多当今的半导体技术都是基于光的吸收发展起来的。吸光性对于量子阱中的纳米尺度结构来说尤为关键。量子阱是由带隙宽度不同的两种薄层材料交替生长在一起形成的具有量子限制效应的微结构,其中的电荷载流子的运动被限制在一个二维平面上,能带结构呈阶梯状分布。

“我们使用无需支撑的厚度可减至3 nm的砷化铟薄膜作为模型材料系统,来准确地探测二维半导体薄膜的厚度和电子能带结构对光吸收性能的影响。”论文的通信作者、劳伦斯伯克利国家实验室材料科学部的科学家阿里·贾维说,“我们发现,这些材料的阶梯式光吸收比与材料的厚度和能带结构无关。”

他们将超薄的砷化铟膜印在由氟化钙制作的光学透明衬底上,砷化铟膜吸收光,氟化钙衬底不吸光。贾维说:“这样我们就能够根据材料的能带结构和厚度来研究厚度范围在3~19 nm之间的薄膜的吸光性能。”

借助伯克利实验室先进光源的傅立叶变换红外分光镜,贾维团队在室温下测出了从一个能带跃迁到下一个能带时的光吸收率。他们观察到,随着砷化铟薄膜能带的阶梯式跃迁,AQ值也以大约1.7%的系数相应地逐级递增或者递减。

“这种吸光规律对于所有的二维半导体来说似乎是普遍适用的。”论文另一个通信作者、电气工程师伊莱·雅布洛诺维奇说,“我们的研究结果加深了对于强量子限制效应下的电子-光子相互作用的基本认识,也为了解如何使二维半导体拓展出新奇的光子和光电应用提供了独特视角。”

来源:中国科技网

新型超级电容器寿命可与传统电池相媲美

据报道,澳大利亚科学家用石墨烯制造出了一种更致密的超级电容,其使用寿命可与传统电池相媲美,且能量密度为现有超级电容的12倍,可广泛应用于可再生能源存储、便携式电子设备以及电动汽车等领域。相关研究发表在最新一期的《科学》杂志上。

超级电容一般由多孔的碳组成,其中灌满了液体电解质(其主要作用是负责传输电荷)。超级电容的最大优势是使用寿命长和充电快捷,但其缺点也很明显,那就是能量密度比较低,目前的超级电容的能量密度仅为5~8 W·h/L,这意味着超级电容要做得很大或者必须经常充电。

现在,莫纳什大学材料工程学教授李丹(音译)领导的研究团队研制出了一种能量密度为60 W·h/L的超级电容,其能量密度为目前的超级电容的12倍左右。李丹团队将目光投向了材料界的后起之秀石墨烯。因为石墨烯的化学性能非常稳定,而且导电性能卓越。

李丹团队利用他们以前研发出的一种适应性石墨烯凝胶薄膜来制造新型超级电容中的致密电极。另外,他们使用传统超级电容内的导体——液体电解质来控制亚纳米尺度的石墨烯薄片之间的间隔。这种液体电解质有两个作用:保持石墨烯薄片之间的微小间距以及导电。

与传统“硬”的多孔碳很多不必要的大“孔”浪费了不少空间不同,李丹团队使用石墨烯薄片制成的电极,在没有损害多孔性的同时也让能量密度达到了最大值。他们使用的方法与传统造纸过程中使用的方法类似,这意味着这一方法很容易进行工业升级而且也具有成本优势。

猜你喜欢

李丹能带电容器
吃东西时注意多
顽皮的小雨滴
汽车转向管柱吸能带变形研究和仿真优化
电容器的实验教学
含有电容器放电功能的IC(ICX)的应用及其安规符合性要求
Life OR Death Decision
想你所想 不止于车
A Brief Analysis of Embodiment of Creative Treason in the Chinese Translation of English for Science and Technology
A Brief Analysis of Embodiment of Creative Treason in the Chinese Translation of English for Science and Technology
平行板电容器的两类动态分析