广州卷烟厂数据中心机房供配电及防雷接地系统设计浅析
2012-11-29五洲工程设计研究院北京100053
王 静(五洲工程设计研究院, 北京 100053)
随着计算机在各行各业的广泛应用和计算机技术的发展,怎样确保计算机设备的正常运行,怎样给从事计算机操作、管理的工作人员创造良好的工作环境,这些问题越来越被人们所重视。计算机中心机房环境除必须满足计算机设备对温度、湿度和空气洁净度、供电电源的质量(电压、频率和稳定性等)、接地地线、电磁场和振动、防火、防盗、防雷、屏蔽和接地等项的技术要求外,还必须满足在机房中工作的人员对照明度、空气的新鲜度和流动速度、噪声的要求。
国家关于计算机机房建设有一个新的国家级标准,即GB50174-2008《电子信息系统机房设计规范》。目前,这个标准就是计算机机房建设的主要依据,电子信息系统机房建设是一项复杂、涉及技术面比较广的综合工程,包括:空气调节技术、电源供配电技术、自动监测与控制技术、防雷技术、保安与消防技术和建筑与装饰技术等。
下面以广州卷烟厂的数据中心机房为例,主要对其供配电系统和防雷接地系统设计进行介绍。
1 厂区概况介绍
广州卷烟厂位于荔湾区东沙经济开发区环翠南路88号,占地69.8万m2,东邻东沙大桥,西依幽静的花地河,南望美丽的珠江,北靠环城高速。交通便利、周边环境优美,两面临水,是广东卷烟工业的核心生产基地,也是“双喜”品牌的主要生产基地和全省卷烟工业的技术研发、物流和培训中心,还是国家烟草专卖局和广州市的重点工程项目。
厂区占地约66.7万m2,主要建筑物有:
办公楼:多层框架,地下1层为停车场,建筑面积约2万m2。
技术中心:多层框架,建筑面积约1.2万m2。
联合生产工房:车间为单层网架、辅房为多层框架,建筑面积约18万m2。
成品库:高架库部分为单层网架,高23m,出入库区为多层框架,建筑面积约2万m2。
各种库房12栋:多层框架,每栋建筑面积约1.5 万m2。
动力中心:多层框架,建筑面积约1.2万m2。其他辅助用房如传达室、门卫、污水处理站及工业垃圾站等。
2 计算机中心机房供配电系统
中心机房内的计算机设备配电系统是计算机网络系统正常运行的前提和保证。根据最新的《电子信息系统机房设计规范》GB50174-2008对电压变动、频率变化、波形失真率分级如表1所示。
表1 电压变动、频率变化、波形失真率分级
2.1 供配电方式
本项目中心机房的配线方式采用三种方式,分别是380V、50Hz频率以及三相五线制,供电方式是五路独立的供电线路。从办公楼1层的低压配电室引出五路独立的380V电源,送至中心机房UPS的动力配电柜内,五路供电可以保障不会出现断电的不利情况。
UPS配电间装有一台UPS市电输入柜(320kVA)、一台机房空调配电柜(350kVA)、一台市电配电柜(60kW)以及一台UPS输出柜AP1(320kW)。两个主配电柜都带有双路电源自动互投装置,如果一路市电出现断电,则会自动切换至另一路市电,进行供电。
UPS市电输入柜为2台UPS主机供电;机房空调配电柜为18台精密空调供电;市电配电柜为机房区域内供电,包括照明、新风设备、办公用电和辅助插座等供电;UPS输出柜AP1输出到各设备间的电源列头柜以提供给中心机房内的关键设备供电,如服务器、网络设备等。
2.2 配电柜配置
本工程采用基业配电柜(电源列头柜),以提高整个系统的可靠性和可维护性。所有的配电柜包括三相电源指示灯、电量仪及三相五线或单相三线开关等均采用国外知名品牌产品。
2.3 UPS配电系统
恒定的电源供给保证了中心机房内设备数据资料的存贮,优质的UPS电源是其运行的良好保证。UPS电源能够避免由于市电电源设备的质量问题所带来的危害,如电源断电、电源浪涌、电源波动、电压下陷、减幅振荡、电源突波、电源干扰及交换瞬变等。
根据广东中烟广州生产基地信息组提供的《广州生产基地中心机房设计需求》中《附件六:广州生产基地中心机房机柜用电容量估算表》,以UPS供电要求的实际功率198.4kW来计算,按80%的功率因数折算为248kVA,因此需选用2台160kVA UPS组成并机系统,后备时间为2h,共512节NP200-6铅酸蓄电池(6V,200Ah)。
2.4 照明配电系统
照明配电系统由照明配电箱供电,中心机房照度指标满足《电子信息系统机房设计规范》GB50174-2008规定的要求,工作区内一般照明的均匀度(最低照度与平均照度之比)不应小于0.7。
中心机房内设置一般照明、应急照明(由UPS供电)和消防疏散照明,并设置单独的配电箱。市电照明配电系统由本层市电配电箱供电,应急照明采用UPS配电柜供电。照明设备选用哑光铝合金格栅、不锈钢反射弧罩灯盘。在机房内均匀分布安装285套40W×3灯盘,规格为1200×600mm,与600×600mm的天花相匹配,可获得较好的视觉效果。光源采用日光型冷光源36W冷色温(4000K)荧光光管,使用寿命大于1.2万h,以保证机柜前后的足够照度(400lx),均匀、没有暗角、不产生眩光。
2.5 应急照明系统
中心机房内按《电子信息系统机房设计规范》GB50174-2008规定的要求,应急照明系统的照度不低于正常照明的10%。中心机房的照明灯盘根据面积大小将中间一只灯管作为应急照明,采用UPS供电,当市电停电时能持续提供应急照明,照度将不低于50lx。
2.6 线缆选用
本工程电力电缆全部采用ZR-BVV阻燃双塑系列电线电缆,应急回路使用耐火双塑铜芯(NH-BVV)电缆,线缆截面积根据负载的大小而定,完全符合设计及国家有关标准要求。主动力配电柜、电源列头柜和各服务器机柜之间的电线电缆均采用交联耐火(NH-YJV)电缆。
2.7 管槽设计
根据中心机房的情况,机房线缆采用上走线方式,强电线缆全部敷设于天花板下吊装的封闭铝合金线槽内。由于铝合金线槽要承重横梁,因此选用了专业的优质工程铝合金型材。其表面具有光亮氧化涂复,并具有重量轻、材质硬、承重量大且通用性能好等特点。
3 计算机中心机房防雷系统
雷电一般分为直击雷和感应雷两大类。计算机中心机房可以采用建筑物所装的避雷针来防护直击雷;而机房电源系统和弱电信息系统的防雷,则主要是防止由感应雷和其他原因引起的雷电浪涌和过电压。
按照最新的防雷技术规范,即GB50343-2004《建筑物电子信息系统防雷技术规范》的相关要求,计算机中心机房的防雷措施可以分为电源和信号两大部分的防雷。
3.1 电源部分防护
按国家关于防雷技术的有关法规规定,电源部分的防雷可分为三个部分,共设三级保护。
由于中心机房供配电由大楼总配电室提供,其前端大楼已采用了一级防雷,对机房供配电的防护主要侧重在供电回路的防雷浪涌抵制上。为防止感应雷和侧击雷沿电源线进入机房,损坏机房内的重要设备,在市电电源配电柜进线处加装了一套DEHN guard H385 3+N高容通量的防雷器,作为电源部分的一级保护;在UPS输入和输出配电柜各加装一套DEHN guard T385 3+N防雷器,作为电源部分的第二级保护;而在各列头柜内安装了一套DEHN rail 230 3+N防雷器,作为电源部分的第三级保护。
3.2 信息系统保护
信息系统的保护可以分为粗保护和精细保护两大类。粗保护的量级可以根据所属保护区的级别来确定;而精细保护的量级则要依据电子设备的敏感度确定,还需要考虑卫星接收系统、网络专线系统、电话系统及监控系统等。
在信息系统进入建筑物电缆的内芯线端加装避雷器,电缆的空线对应接地,并且做好屏蔽接地。为了确保防雷系统的正常工作,还应该关注设备的传输速率、在线电压及接口类型等等。
由于从室外进入计算机中心机房的线缆均为光纤,此部分只需在机房配线间做好光纤的防雷接地即可。
4 计算机中心机房接地系统
计算机中心机房的接地系统是机房建设中的重要内容,接地系统能否良好地运行,也是衡量一个机房系统建设质量的重要参数。中心机房应该有优质的地线系统,以保证计算机的正常运行,同时也可以防止由寄生电容耦合所带来的干扰,确保设备和工作人员的安全。
计算机中心机房的精密设备可能会造成设备耐过电压和电流的水平下降,进而导致对感应雷和操作过电压浪涌的承受能力下降,这些都是由于其内部结构的高度集成化造成的。感应雷侵入中心机房和计算机网络系统的主要途径有:信号传输通道引入、交流电源380V、220V电源线引入、地电位反击等。根据国家及国际有关规定,为了使机房设备和计算机网络系统稳定运行,保障工作人员的工作环境,中心机房的防雷接地应与整个建筑物防雷接地共用同一接地装置,即电子设备的工作接地和保护接地采用合用一组接地栓的联合接地方式,接地电阻小于1Ω,其中保护接地包括建筑物防雷接地和屏幕接地两大类。
然而为了提高可靠性,应改进为将保护、工作接地与防雷接地的引入线分开,各自单独接至接地体,避雷器通过防雷接地引入线泄放浪涌电流,设备接另一引入线。
4.1 交流工作接地
中心机房与联合工房共用接地系统,从联合工房的接地点单独抽头,接点采用锡焊或铜焊使其接触良好。接地装置按国家标准《计算站场地技术要求》中规定的,在本方案中接地电阻≤1Ω,零地电压<1V。
安全保护地在计算机系统中的处理方法也分为计算机中心房内、外两种情况。计算机中心机房内的安全保护地是将所有机箱的机壳,用一根绝缘多股导线串联起来,导线横截面不小2.5mm2。在此我们采用了BVR4mm2多股铜芯导线,再用接地母线将其接到机房地板下的铜排汇流排上。计算机房外使用的交流设备的机壳按有关电气规定进行接地。
4.2 直流工作接地
在本工程采用网格接地方式。在机房地板下采用4×40mm的紫铜排沿机房周边布置横纵交叉方格接地汇流排,将紫铜排就近与机房内2个接地点连接,紫铜排通过绝缘固定在地板上,方便机房内计算机设备和防雷设备接地。所有计算机设备直流地都用BVR4mm2多股铜芯绝缘导线焊接至铜排交叉点上,紫铜排接地网采用接地母线焊接到大楼联合接地级。
4.3 防雷保护接地
所有防雷器设备的接地线全部接到共用接地排(PAS)上,并采用接地母线从共用接地排连接至建筑物防雷接点网接线柱上。
4.4 机房屏蔽处理措施
通常情况下,尽管机房所在大楼原有的防雷接地系统能保护机房免受直击雷的危害,但仍然存在遭受雷电危害的潜在危险。由于中心机房集中了大量的高度集成化微电子设备,会造成系统设备耐过电压和过电流的水平下降,进而对雷电浪涌的承受能力也会下降。因此,有必要对机房进行一定的屏蔽处理,具体做法如下:
1)吊顶龙骨天面接地网
吊顶主龙骨采用轻钢铁质龙骨,副龙骨采用钢制龙骨,在龙骨的连接、交叉处采用自攻螺丝进行禁固、加强联接,在与周边墙板连接处将龙骨与彩钢板用4mm2的绝缘铜缆分段,并与接地汇集线连接成一体,形成天面接地网。
2)轻钢架彩钢板墙面接地网
在网管操作间、网络设备间和配电间墙面安装轻钢骨架和彩钢板,在轻钢骨架底部采用4#镀锌角钢做一条接地汇集环,与彩钢板及吊顶龙骨连成一体。然后把所有的龙骨用4mm2绝缘铜缆联结后与接地汇集线连接,形成立面接地网。
3)防静电地板支架地面接地网
防静电活动地板的钢质支架相互连接,采用4mm2绝缘铜缆分段与接地汇集线焊接联成一体,形成地面接地网。这样整个机房空间形成一个等电位“法拉第笼”,从而使机房达到了一定的屏蔽效果,可有效防止空间雷闪电磁脉冲侵入机房。
4)其他接地网
将配电箱金属外壳、电源地、避雷器地、机柜外壳、金属屏蔽线槽、门窗等穿过各防雷区交界的金属部件和系统(设备的外壳),以及对防静电地板下的隔离架进行多点等电位接地,就近连接一体都要与保护地有良好的连接,既能保证工作人员和设备的安全,又给机房内游离电子提供了一个顺畅通路。
5 结语
总之,计算机中心机房的建设集建筑、电气、安装及网络等多个专业技术于一体,应按照功能与美观兼具的设计思想,才能建设一个具备先进性、实用性、扩展性和展示性,用料考究、施工严谨的现代化机房。
[1]陈谱欣.烟草行业计算机机房的规划与设计[J].信息与电脑(理论版), 2012(3).
[2]赵庆.浅谈医院计算机中心机房防雷设计方案[J].医学信息, 2008(5).
[3]蔡益宇.探讨电力信息系统的雷电电磁脉冲防护[J].电网技术, 2003(3).