有限循环2-群全形的自同构群
2012-11-22刘合国王丽
刘合国,王丽
(湖北大学数学与计算机科学学院,湖北 武汉 430062)
(i)当m=1时,Aut(HolG)≅1;
(ii)当m=2时,Aut(HolG)≅HolG=D8;
(iii)当m≥3时,HolG的内自同构群
Inn(HolG)=〈x,y,z|x2=y2m-2=z2m-1=1,[x,y]=1,zx=z-1,zy=z3〉,
且Aut(HolG)/Inn(HolG)≅2×2.
关键词有限循环2-群;全形;自同构群
中图分类号O152.3文献标志码A
文献[2-5]中已经确定了可裂的亚循环p-群的自同构群的结构,近来文献[6]中完全确定了可裂的亚循环群的自同构群的结构,这样当p为奇素数时,循环p-群G的全形HolG的自同构群Aut(HolG)就可以完全确定了.事实上,当G≅pm时,由文献[6]中引理3.2知
Holpm≅(pm-1pm)×p-1,
最后由文献[6]中定理4.6可以得 Aut(Holpm)≅(p-1Sp)×Autp-1,
现在我们要确定有限循环2-群全形的自同构群的结构.
引理当m≥3,k≥0时,下述结论成立.
(i) 32k+1≡1(mod 2),但32k+1≢1(mod 22);
(ii)32k+1≡-1(mod 22),但32k+1≢-1(mod 23);
(iii)32k≡-1(mod 2),但32k≢-1(mod 22);
(iv)32m-2(2k+1)≡1(mod 2m),但32m-2(2k+1)≢1(mod 2m+1).
引理的证明(i),(ii),(iii)式容易验证,只对(iv)进行证明.
当m=3时,32m-2(2k+1)-1=32(2k+1)-1=(32k+1-1)(32k+1+1),由(i),(ii)知
32(2k+1)≡1(mod 23),32(2k+1)≢1(mod 24).
归纳地假设
32m-2(2k+1)≡1(mod 2m),32m-2(2k+1)≢1(mod 2m+1).
因为
32m-1(2k+1)-1=(32m-2(2k+1))2-1=(32m-2(2k+1)-1)(32m-2(2k+1)+1),
所以
32m-1(2k+1)≡1(mod 2m+1),32m-1(2k+1)≢1(mod 2m+2),
证毕.
当G≅2时,Aut(HolG)≅1;当G≅22时,G的全形HolG是8阶二面体群,此时Aut(HolG)≅HolG=D8.
当G≅2m,m≥3时,令G=〈z〉≅2m,G有两个典型的自同构x和y:
x:G→G,z|→z-1;
y:G→G,z|→z3.
其中|x|=2,|y|=2m-2.因为Aut2m≅2×2m-2,所以AutG≅〈x〉×〈y〉.这样
[xaybzc,x]=z-2c,
[xaybzc,y]=z2c,
[xaybzc,z]=z1-(-1)a3b,
得c≡0(mod 2m-1),且(-1)a3b≡1(mod 2m),根据引理得a=0,b=0,c=0或者2m-1.所以ζH⊆〈z2m-1〉,又因〈z2m-1〉⊆ζH,故ζH=〈z2m-1〉.
一方面由[x,z]=z2可得z2∈H′,故〈z2〉≤H′;另一方面由〈z2〉char〈z〉H可得〈z2〉H,又由[x,z]=z2,[z,y]=z2知H/〈z2〉是Able群,于是有H′≤〈z2〉,从而H′=〈z2〉.因H是有限2-群,故FratH=H′H2,其中H2=〈h2|h∈H〉,所以便有FratH=〈y2,z2〉.
任取ψ∈AutH,设
ψ:H→H
x|→xa11ya21za31y2b11z2b21,
y|→xa12ya22za32y2b12z2b22,
z|→xa13ya23za33y2b13z2b23.
其中aij=0或者1;0≤2b1j<2m-2,0≤2b2j<2m(i,j=1,2,3).
(i)当m=3时,|AutH|=26,ψ具有如下形式:
ψ:H→H,x|→xz2i,y|→yz2k,z|→22j+1
或者
ψ:H→H,x|→yz2i,y|→xz2k,z|→xyz2j+1,
其中2|(k+i);
(ii)当m≥4时,|AutH|=22m,ψ具有如下形式:
ψ:H→H,x|→xz2i,y|→yz2k,z|→z2j+1
或者
ψ:H→H,x|→xy2m-3z2i,y|→y2m-3+1z2k,z|→zy2m-3z2j,
其中2m-2|(k+i).
(xa11ya21za31y2b11z2b21)2= (xa11ya21+2b11z32b11a31+2b21)2=x2a11y2a21+4b11z(32b11a31+2b21)[1+(-1)a113a21+2b11]=
y2a21+4b11z(32b11a31+2b21)[1+(-1)a113a21+2b11].
所以有
2a21+4b11≡0(mod 2m-2),
而且
(32b11a31+2b21)[1+(-1)a113a21+2b11]≡0(mod 2m).
根据引理可得当m≥4时,
(i)a11=0,a21=0,a31=0,2b11=0,2b21=2m-1,此时2阶元形如z2m-1;
(ii)a11=0,a21=0,a31=0,2b11=2m-3,2b21=0,此时2阶元形如y2m-3;
(iii)a11=0,a21=0,a31=0,2b11=2m-3,2b21=2m-1,此时2阶元形如y2m-3z2m-1;
(iv)a11=1,a21=0,a31=0,2b11=0,2b21=2i,此时2阶元形如xz2i;
(v)a11=1,a21=0,a31=1,2b11=0,2b21=2i,此时2阶元形如xz2i+1;
(vi)a11=1,a21=0,a31=0,2b11=2m-3,2b21=2i,此时2阶元形如xy2m-3z2i.
当m≥4时,由数学归纳法得
(xa12ya22za32y2b12z2b22)2m-2= (xa12ya22+2b12z32b12a32+2b22)2m-2=
y2m-2(a22+2b12)zez=zez,
其中ez=(32b12a32+2b22)[1+(-1)a123a22+2b12+…+(-1)(2m-2-1)a123(2m-2-1)(a22+2b12)].
于是当(-1)a123a22+2b12=1时
ez=(32b12a32+2b22)2m-2,(xa12ya22za32y2b12z2b22)2m-2=z(32b12a32+2b22)2m-2.
当(-1)a123a22+2b12≠1时,
ez≡0(mod 2m),ez≢0(mod 2m+1);
或者
ez≡0(mod 2m),2m-2(a22+2b12)≢0(mod 2m-1),
于是当(-1)a123a22+2b12=1时,即a12=a22=2b12=0,有
ez=(32b12a32+2b22)2m-2=(a32+2b22)2m-2,
2m-2(a22+2b12)=0≡0(mod 2m-1).
所以
(a32+2b22)2m-2≡0(mod 2m),(a32+2b22)2m-2≢0(mod 2m+1).
即
a32+2b22≡0(mod 22),a32+2b22≢0(mod 23).
从而a32=0,2b22=22(2j+1),故a12=0,a22=0,a32=0,2b12=0,2b22=22(2j+1),此时2m-2阶元形如z22(2j+1).
当(-1)a123a22+2b12≠1时,a12,a22,2b12不同时为0.
(i) 若a22=0,则有
2m-2(a22+2b12)=2m-1b12≡0(mod 2m-1).
所以
若a12=0,则
因为a12,a22,2b12不同时为0,所以可设2b12=2t(2k+1)(其中t≥1,k≥0),此时有
于是可得
(32b12a32+2b22)≡0(mod 22),(32b12a32+2b22)≢0(mod 23).
由此解得a32=0,2b22=22(2j+1),故a12=0,a22=0,a32=0,2b12=2i(其中i≥1),2b22=22(2j+1),此时2m-2阶元形如y2iz22(2j+1)(其中i≥1).
若a12=1,则有
于是可得t=1且(32b12a32+2b22)≢0(mod 2).由此解得a32=1,2b12=2(i+1),故a12=1,a22=0,a32=1,2b12=2(2i+1),2b22=2j,此时2m-2阶元形如xzy2(2i+1)z2j.
(ii)若a22=1,则有
2m-2(a22+2b12)=2m-2(1+2b12)≢0(mod 2m-1).
同上分a12=0和a12=1两种情况进行讨论,得形如y2i+1z2j,xy2i+1z22j的元阶也是2m-2.
(4)注意到
[xa1yb1zc1,xa2yb2zc2]=zc1((-1)a23b2)-c2((-1)a13b1),
[z2m-1,z2j+1]=1,
[y2m-3z2m-1,z2j+1]=z(2j+1)(1-32m-3),
[xzi,z2j+1]=z2(2j+1),
[xy2m-3z2i,z2j+1]=z(2j+1)(1+32m-3).
[z2m-1,zy2m-3z2j]=1,
[y2m-3,zy2m-3z2j]=z(32m-3+2j)(1-32m-3),
[y2m-3z2m-1,zy2m-3z2j]=z(32m-3+2j)(1-32m-3),
[xzi,zy2m-3z2j]=z2(32m-3+2j)+i(32m-3-1),
[xy2m-3z2i,zy2m-3z2j]=z(32m-3+2j)(1+32m-3).
[z4,z2j+1]=1,
[yz2i,z2j+1]=z-2(2j+1),
[xzi,z2j+1]=z2(2j+1),
[xyz4i,z2j+1]=z4(2j+1).
当m=3时,
当m≥4时,
[z2j+1,y2iz22(2k+1)]=z(2j+1)(32i-1),[z2j+1,xzy2(2i+1)z2k]=z-(2j+1)(1+32(2i+1)),
[z2j+1,y2i+1z2k]=z(2j+1)(32i+1-1),[z2j+1,xy2i+1z22k]=z-(2j+1)(1+32i+1).
[zy2m-3z2j,y2iz22(2k+1)]=z(32i-1)(32m-3+2j),
[zy2m-3z2j,xzy2(2i+1)z2k]=z(32(2i+1)+2k)(1-32m-3)z-(32(2i+1)+1)(32m-3+2j),
[zy2m-3z2j,y2i+1z2k]=z(32i+1-1)(32m-3+2j),
[zy2m-3z2j,xy2i+1z22k]=z-(32i+1+1)(32m-3+2j).
[z2j+1,z4]=1,
[z2j+1,yz2k]=z2(2j+1),
[z2j+1,xzk]=z-2(2j+1),
[z2j+1,xyz4k]=z-4(2j+1).
[xyz2j+1,z4]=1,[xyz2j+1,yz2k]=z2(2j+1),
[xyz2j+1,xzk]=z4kz-2(2j+1),[xyz2j+1,xyz4k]=z-4(2j+1).
当m=3时,
当m≥4时,
当m≥4时,
ψ:H→H,x|→xz2i,y|→yz2k,z|→z2j+1
的自同构ψ有22m-1个(其中2m-2|(k+i)).
因为
[xz2i+1,y2m-3+1z2k]=z4kz(2i+1)(3(2m-3+1)-1)≠1,
[xy2m-3z2i,y2m-3+1z2k]=z2k(32m-3+1)z2i[3(2m-3+1)-1].
若
2k(32m-3+1)+2i[3(2m-3+1)-1]≡0(mod 2m),
即
2(32m-3-1)(k+3i)+2(2k+2i)≡0(mod 2m),
2k+2i≡0(mod 2m-1),
ψ:H→H,x|→xy2m-3z2i,y|→y2m-3+1z2k,z|→zy2m-3z2j
的自同构ψ有22m-1个(其中2m-2|(k+i)).
当m=3时,
同m≥4时的情况,可知满足ψ:H→Hx|→xz2i,y|→yz2k,z|→z2j+1
的自同构ψ有25个(其中2|(k+i)).
因为
[xz2i+1,xz2k]=z2(2k-2i-1)≠1,[yz2i,xz2k]=z-2(2k+2i).
若
-2(2k+2i)≡0(mod 23),
即
2k+2j≡0(mod 22),
故满足
ψ:H→H,x|→yz2i,y|→xz2k,z|→xyz2j+1
的自同构ψ有25个(其中2|(k+i)),证毕.
定理2设G是2m阶循环群(m≥3),记
H:=HolG=〈x,y,z|x2=y2m-2=z2m=1,[x,y]=1,zx=z-1,zy=z3〉.
则
InnH=〈x,y,z|x2=y2m-2=z2m-1=1,[x,y]=1,zx=z-1,zy=z3〉,
且AutH/InnH≅2×2.
定理2的证明已知ζH=〈z2m-1〉.于是可得
InnH≅H/ζH=〈x,y,z|x2=y2m-2=z2m-1=1,[x,y]=1,zx=z-1,zy=z3〉.
现将xa11ya21za31y2b11z2b21共轭地作用在生成元x,y,z上时,得到
xxa11ya21za31y2b11z2b21=xz2(32b11a31+2b21);
yxa11ya21za31y2b11z2b21=yz-2(32b11a31+2b21);
zxa11ya21za31y2b11z2b21=z(-1)a113a21+2b11.
因2(32b11a31+2b21)可取遍0,1,2,…,2m-1中所有偶数,(-1)a113a21+2b11可取遍0,1,2,…,2m-1中所有奇数,故xa11ya21za31y2b11z2b21所诱导的内自同构有2m-12m-1=22m-2个.又因InnH≅(2×2m-2)2m-1,故|InnH|=22m-2,于是H的任意内自同构必定把x映射为把y映射为把z映射为
注意到|AutH|=22m,|InnH|=22m-2,可得|OutH|=|AutH/InnH|=4.
当m=3时,取α,β∈AutH,其中
α:H→H,x|→yz2,y|→xz2,z|→xyz.β:H→H,x|→xz4,y|→y,z|→z.
则α,β∉InnH,且可以验证α2=β2=1,即|αInnH|=|βInnH|=2.因为
αβ:H→H,x|→yz6,y|→xz2,z|→xyz.
所以αβ∉InnH,αInnH≠βInnH.
于是可得
AutH/InnH=〈αInnH〉×〈βInnH〉≅2×2;
当m≥4时,取α,β∈AutH,其中
α:H→H,x|→xz2m-1,y|→y,z|→z.β:H→H,x|→xy2m-3z2m-1,y|→y2m-3+1,z|→zy2m-3.
.
同理可以验证|αInnH|=|βInnH|=2,αInnH≠βInnH.
于是可得
AutH/InnH=〈αInnH〉×〈βInnH〉≅2×2,
证毕.
[1] Kargapolov M I, Merzljakov Ju I.Fundamentals of the theory of groups[M].NewYork:Springer-Verlag,1979.
[2] Curran M J.The automorphism group of a split metacyclic 2-group[J].Arch Math,2007,89:10-23.
[3] Bidwell J N,Curran M J. The automorphism group of a split metacyclic p-group[J].Arch Math,2006,87:488-497.
[4] Zhou Fang,Liu Heguo.Automorphism groups of semidirect products[J].Arch Math,2008,91:193-198.
[5] Bidwell J N, Curran M J. Corrigendum to “The automorphism group of a split metacyclic p-group”[J].Arch Math,2009,92:14-18.
[6] Golasiński M, GonCalves D L. On automorphisms of split metacyclic groups[J].Manuscripta Math,2009,128:251-273.