关于A-G的几个不等式
2012-11-14周美秀张小明
周美秀,张小明
(1. 浙江广播电视大学 开放与远程教育研究院,浙江 杭州,310030; 2. 浙江海宁电大,浙江 海宁, 314400)
关于A-G的几个不等式
周美秀1,张小明2
(1. 浙江广播电视大学 开放与远程教育研究院,浙江 杭州,310030; 2. 浙江海宁电大,浙江 海宁, 314400)
为加强或加细几个著名的算术-几何不等式,研究用方差来估算两者的差,并利用一个统一的证明模式,加强或推广这些结果.
算术平均;几何平均;最值压缩定理;不等式
0 引 言
不加特殊说明,本文都设
通过对均值差的估计, 加强或加细著名的算术-几何-调和平均值不等式
H(w,a)≤G(w,a)≤A(w,a)
(1)
是不等式理论研究的热点之一.
(2)
和
文献[2][3]中有
(4)
和
(5)
文[4][5]中的结果等价于
(6)
文[6]中有
(7)
文[7]把式(4)和(7)分别加强为
(8)
和
(9)
在文[14], Alzer H证明了
(10)
(11)
本文将以统一的方法加强或推广以上式(4)-(7)和式(10)、(11),其中的结果也与(8)、(9)不分强弱,但形式比其简洁.
1 有关引理
以下都设集合D⊆Rn是有内点的对称凸集,对于i=1,2,…,n,记
和
若对引理1进行函数变换可得引理2和引理3,详细证明见参考文献[9].
证明设
lnIn={lna=(lna1,lna2,…lnan)|a∈In},g:y∈lnIn→f(ey1,ey1,…,eyn),
则
□
引理3证毕.
□
2 A(a)-G(a)的几个上下界
定理1
(12)
即
(13)
则有
和
此即为(12)的右式.
(13)的左式为同理可证,在此略.定理1证毕.
□
此即为式(4). 对于一般的wi(i=1,2,…,n),由于无理数是有理数的极限,所以式(4)仍成立.
定理2
(14)
即
(15)
有
和
□
同理可证(14)的右式,在此略.
(16)
证明设
则有
□
定理4
(17)
和
□
同理可证(17)的右式,本文在此略. 定理3证毕.
采用评注1中的证明方法,由定理4,易知推论1成立.
推论1
(18)
评注4 式(18)强于式(5).
3 Alzer H的一个不等式加强
rA(a)+(1-r)H(a)≥G(a).
(19)
证明若n=2,命题易证成立.下设
其中q>r.则
和
qA(a)+(1-q)H(a)-G(a)≥0.
再令q→r,知定理5成立.
□
所以说式(19)强于式(10)(11).
[1] Mitrinovic D S, Vasic M. Analytic inequalities[M]. New York: Springer-Verlag,1970:81-83.
[2] Cartwright D I, Field M J. A refinement of the arithmetic mean-geometric mean inequality[J]. Proc Amer Math Soc,1978,71(1):36-38.
[3] Bullen P S. Handbook of Means and their inequalities[M]. The Netherlands: Kluwer Academic Publishers,2003:156.
[4] Williams K S, Beesack P R. Problem 247[J]. Crux Math,1978,4:23-26;37-39.
[5] Mitrinovic D S, Pecaric J E, Fink A M.Classical and new inequalities in analysis [M]. The Netherlands: Kluwer Academic Publishers,1993:39.
[6] Alzer H. A New refinement of the arithemetic mean-geometic mean inequality[J]. Rocky Mountain J Math,1997,27(3):663-667.
[7] Mercer A M. Improved upper and lower bounds for the difference of An-Gn[J]. Rocky Mountain J Math,2001,31(3):553-560.
[8] Zhang Xiaoming, Chu Yuming, A new method to study analytici nequalities[J]. Journal of Inequalities and Applications,2010(2010), Article ID 698012.
[9] Williams K S, Beesack P R. Problem 395[J]. Crux Math,1979,5:89-90;232-233.
[10] Gao Peng. Ky Fan inequality and bounds for differences of means[J]. Int J Math Math Sci,2003,16:995-1002.
[11] Gao Peng. A new approach to Ky Fan-type inequalities[J]. Research Report Collection,2003,6(2),Article 8.
[12] Gao Peng.Certain bounds for the differences of means[J]. J Inequal Pure Appl Math, 2003,4(4), Article 76.
[13] Gao Peng. Some refinements of Ky Fan’s inequality[J]. Research Report Collection,2004,7(1), Article 16.
[14] Alzer H.Sierpinski’s inequality[J]. J Belgian Math Soc,1989,41:139-144.
[15] Zhang Xiaoming, Xi Boyan, Chu Yuming.A new method to prove and find analytic inequalities[J]. Abstract and Applied Analysis,2010 (2010),Article ID 128934.
[16] Zhang Xiaoming, Chu Yuming. New discussion to analytic inequality[M]. Harbin: HarBin Institute of Technology Press,2009:217-259.
SeveralInequalitiesaboutA-G
ZHOU Mei-xiu1, ZHANG Xiao-ming2
(1. Open and Distance Education Research Institute, Zhejiang Radio&Television University, Hangzhou 310030, China;2. Zhejiang Radio & Television University Haining College, Haining 314400, China)
To strengthen and refine some famous arithmetic-geometric inequalityies, this paper used variance to estimate the difference between the two, strengthen or popularize these results with a unified proof mode .
arithmetic mean; geometric mean; compressed independent variables theorem; inequality
2012-04-20
周美秀(1969—),女,教授,主要从事微分方程研究.E-mail:zwy950120@163.com
11.3969/j.issn.1674-232X.2012.05.009
O122.3MSC2010: 26D15
A
1674-232X(2012)05-0426-07