APP下载

基于ARM的微弱信号采集系统的设计

2012-09-27秦华伟

电子设计工程 2012年3期
关键词:标定噪声电路

张 挺,秦华伟

(杭州电子科技大学 机械电子工程研究所,浙江 杭州310008)

基于ARM的微弱信号采集系统的设计

张 挺,秦华伟

(杭州电子科技大学 机械电子工程研究所,浙江 杭州310008)

为提取噪声背景下的微弱信号,提出了一种硬件与软件相结合的实现方案。采用仪表放大技术和单片机控制技术相结合对数据进行检测和处理。该系统优化硬件调理电路设计,保证采集数据的精度要求。利用ARM实现基于数字相关的算法,改善信噪比,有效恢复淹没于强背景噪声中的微弱信号。最后通过对模拟低频微弱电流信号的检测实验,充分显示了该系统在微弱信号检测方面的实用性和有效性。

微弱信号;仪表放大器;改善信噪比;数字相关

对于绝大多数数据采集系统而言,其采集对象一般都为大信号,即有用信号的幅值远远大于噪声,然而在一些特殊的场合,采集到的信号往往很微弱,并且常常被随机噪声所淹没。这种情况下,仅仅采用放大器和滤波器无法有效的检测出微弱有用信号[1-2]。本系统硬件电路针对溶解氧传感器输出的微弱低频电流信号,利用仪表放大器有效抑制共模噪声,通过ARM处理器的数字相关算法优化,保证采集系统的精度要求。

由于确定信号在不同时刻取值具有很强的相关性,而噪声一般都是随机信号,不同时刻其相关性较差。相关检测技术就是基于信号与噪声统计学的特点,充分利用它们的相关性,从而实现微弱信号的提取和降噪的目的。针对被淹没在噪声中的信号,采用数字相关检测算法可以排除噪声。

本系统采用三星(SamSung)公司的ARM7微控制器芯片S3C4510B,这是整个系统的核心,由它控制数据的采集和处理。该模块由以下3个功能:

1)起动AD,控制数据的存储和传输;

2)实现数据处理的算法;

3)负责与上位机进行通讯。

S3C4510B芯片是高性价比的16/32位RSIC微控制器,非常适合低功耗的场合。本系统采用S3C4510B作为处理器,通过外部中断读取ADC数据,并实现基于数字相关的算法。

1 基于数字相关检测的算法

微弱信号检测的主要目的就是从被噪声淹没的信号中提取有用信号。目前常用的检测方法有频域信号相干检测、时域信号积累平均、离散信号计数技术、并行检测方法[3]。其中频域信号信号相干检测是常用的一种方法。

传统的相干检测方法是将信号通过前置低通滤波器滤波之后,再通过锁定模拟放大器(LIA)和参考通道信号完成相关运算。利用信号和噪声不相关的特点,采用互相关检测原理来实现淹没在噪声背景下的微弱信号的提取。虽然LIA速度快,但也存在温度漂移、噪声、价格昂贵、体积较大等一些缺点,不适合小型化集成系统。如果把相关运算转换成功率谱计算,就完全可以利用数字相关运算来代替LIA,从而克服模拟锁定放大器的缺点。根据维纳-辛钦定理,功率信号的自相关函数和其功率谱是一对傅里叶变换[4],因此可将LIA中的相关运算转换为功率谱计算,采用软件来实现相关运算,就可以用数字电路代替模拟模拟锁定放大器。

1.1 检测原理

设被测信号 x(n)由有用信号 s(n)和噪声 η(n)组成:

x(n)的自相关函数为:

式中Rss(m)——s(n)的自相关函数;Rsη——s(n)与 η(n)的互相关函数;Rηs(m)——η(n)与s(n)的互相关函数;Rηη(m)——η(n)的自相关函数。

由于噪声服从正态分布且不含周期分量,因此 Rsη=0,Rηs=0,并随着 m 的增大 Rηη(m)趋于 0,所以 Rxx(m)≈Rs(m),故而 Rxx(m)可简记为 R(m)。

根据维纳-辛钦定理,功率信号的自相关函数和其功率谱是一对傅里叶变换,因此可用快速傅里叶变换(FFT)来计算自相关函数[5]。然而在实际中x(n)只有N个观察值,故求出的Rx(m)是自相关的一个估计值。用FFT计算自相关时,x(n)须补N-1个零,使其长度为2N-1。因此自功率谱为:

对式(4)作 IFFT即可得到 R(m)。 设输入 x(n)是正弦信号,即

根据周期图法,自谱估计可表示为:

式中X2Nejw——x(n)当n=2N-1时的离散傅里叶变换(DFT)。

功率谱估计算法实现数字相关运算的重点是离散傅里叶变换(DFT)[6]。DFT 有其快速的算法 FFT。对于 IFFT,由于经过AD采集的数据为实信号,因此可采用快速有效的实数FET算法。

2 系统硬件设计

2.1 系统组成

微弱信号采集系统的总体框图如图1所示,系统以S3C4510B为核心,主要包含前置调理电路和采集电路两大部分,主要由模拟信号检测、滤波放大、数据采集处理、信号通信传输电路组成。

2.2 前置调理电路设计

前置调理电路主要有仪表放大器、二阶低通滤波器组成。

图1 微弱信号采集系统框图Fig.1 Block diagram of weak signal decting system

数据采集系统中,若采集的信号为微弱信号,必须用放大器放大。然而通用放大器不适合放大微弱信号,因此选择仪表放大器作为放大电路。仪表放大器为差分放大结构,因此有很强的抑制共模噪声的能力,同时有很高的输入阻抗和很低的输出阻抗,而且具有增益高且稳定,失调电压和温漂小等优点[7],所以仪表放大器非常适合放大微弱信号。

另外,为了使输出电压在高频段能够快速下降,提高低通滤波器滤除噪声的能力,这里选用了二阶低通滤波器。前置调理电路原理如图2所示。

图2 前置放大电路Fig.2 Preamplifier circuit

在对微弱信号进行检测的过程中,集成运放对电路的干扰很大,因此应选择接近理想运放的放大器芯片。主要参数的要求是,具有较低的偏置电流、较低的输入失调电压和较低的零漂、较大的输入电阻和较高的共模抑制比、较大的开环放大倍数。特别是在电流电压转换级,对集成运放的要求较高,如果输入电流在nA级,一般要求运放的偏置电流在pA级。目前市面上已经有很多满足条件的运放,比如LMC6442、AD8571、OPA2703 等。

模拟电路部分的仪表放大级采用了高性能运放LT1125,其带宽为12.5 MHz,最大失调电压为70 μV,共模抑制比为112 dB。

二阶低通滤波器部分利用高速运放LT1355构成,其截止频率为200 Hz,抑制高频噪声。另外,为减小噪声在信号传输过程中对信号的干扰,采用差分输出放大器SSM2142.,将单端信号转换成差分信号进行传输,同时可以增强信号的驱动能力[8]。

2.3 采集电路设计

采集电路由差分放大器SSM2141、增益放大器LT1355、A/D芯片ADC12062和ARM处理器S3C4510B组成,如图3所示。

图3 采集电路框图Fig.3 Block diagram of collecting circuit

差分放大器SSM2141将输入的差分信号再次转换成单端信号。高速运放LT1355将单端信号放大,使其值符合A/D芯片输入电压范围。

ADC12062作为模数转换芯片,具有12位采样精度,其基准电压为4.096 V。ADC12062采用CMOS工艺,具有低功耗的特点,功耗为75 mW。ADC有下降沿触发中断引脚,将此引脚与ARM的外部中断引脚相连,ADC转换完成以后,及时通知ARM读取数据。

3 系统软件设计

数据采集系统的软件包括ARM初始化程序、中断向量表和应用程序。

3.1 初始化程序和中断向量表

系统启动时首先运行ARM内部ROM的BOOT LOADER程序,通过这段程序,可以初始化硬件、建立内存空间映射图[9]。BOOT LOADER程序基本流程图如图4所示。

图4 启动程序流程图Fig.4 Process flow diagram of starting program

1)存储器初始化 主要配置芯片内外存储器介质映射和实现地址空间的特殊存储器。配置如下。

2)异常中断处理。

异常向量表

异常初始化代码

3.2 微弱信号处理算法的实现

本研究采用基于功率谱估计来实现数字相关算法,流程图如图5所示。

图5 数字相关算法流程图Fig.5 Process flow diagram of digital correlation algorithm

相关运算转变为功率谱计算,要对采集数据进行快速傅里叶变换(FFT)和快速傅里叶反变换(IFFT),其中 FFT傅里叶算法是该程序模块的重点,时间抽取(DIT)基2的FFT算法是较为合适的FFT算法[10]。

图6是FFT算法实现的基本框图。在蝶形运算中,奇数序列和偶数序列分开计算,因此设计了偶数序列存储单元和奇数序列存储单元。

3.3 AD数据采集软件的实现

ADC12062作为模数转换芯片,采用外部中断向ARM芯片报告数据转换完成,然后ARM读取数据到数据存储区,当数据存储区满后,上位机会启动数据处理程序和上位机传送数据程序。AD数据采集软件的流程图如图7所示。

4 试验研究

调试完毕后,对系统进行测试。与实验相关的设备主要包括:双路信号发生器AFG3102、示波器TDS2024B、双路直流稳压电源、双相DSP锁相放大器Signal Recovery 7265以及其他相关仪器。本实验通过锁相放大器的标定值与微弱信号检测系统的测量值进行对比,从而得出系统的性能参数,实验现场如图8所示。

图6 FFT算法流程图Fig.6 Process flow diagram of FFT algorithm

图7 数据采集流程图Fig.7 Process flow diagram of data collection

图8 实验现场图Fig.8 Photograph of test site

4.1 系统模拟电路部分测试

根据溶解氧传感器输出的微弱电流信号的特点,设计了电流型恒流源来模拟产生微弱电流信号,采用电压转化为电流电路来设计纳安级电流源,并用锁相放大仪器7265对输出的电流值和相位进行标定。标定的电流信号的频率为100 Hz,相位为0度,标定范围1.7~86.9 nA,如图9所示电流源输出随输入电压变化曲线。图10所示电流标定值与微弱信号检测系统模拟部分的电流测量值,其中标定值表示锁相放大器标定电流源的电流值,实测值表示由微弱信号检测系统模拟部分的测试电流源的测试值。图11所示电流标定值与微弱信号检测系统测量值之间的误差曲线,由均方差公式可得,电流精度为0.24 nA。

4.2 微弱信号检测系统整体测试

检测系统的模拟电路部分、数字部分和电脑界面整体构成一个模拟与数字的混合系统,即微弱信号检测系统。图12所示为电流标定值与微弱信号检测系统的电流测试值,其中标定值表示锁相放大器标定的电流源电流值,实测值表示由检测系统的测试电流源测试值。图13所示为电流标定值与微弱信号检测系统测试值之间的误差曲线,由均方差公式可得,电流精度为0.12 nA。

图9 电流源电流输出随输入信号的变化曲线Fig.9 Changing output curve of current source which is the response of input signal

图10 电流标定值与微弱信号检测系统的模拟部分电流测试值Fig.10 Calibration value of current and the test value of analogous circuit of weak signal decting system

图11 电流标定值与微弱信号检测系统模拟部分测试值之间的误差曲线Fig.11 Deviation curve between the calibration value of current and the test value of analogous circuit of weak signal decting system

5 结束语

该微弱信号检测系统的设计性能超过了低端芯片,又接近于高端仪器,能够测量1.7~86.9 nA电流信号,电流精度为0.12 nA,又实现了电路的小型化、简单化、形象化、低成本设计。利用ARM实现基于数字相关的算法,改善信噪比,有效恢复淹没于强背景噪声中的微弱信号。最后通过对模拟低频微弱信号的检测实验,充分显示了该系统在微弱信号检测方面的实用性和有效性。

图12 电流标定值与微弱信号检测系统电流测试值Fig.12 Calibration value of current and the test value of weak signal decting system

图13 电流标定值与微弱信号检测系统测试值之间的误差曲线Fig.13 Deviation curve between the calibration value of current and the test value of weak signal decting system

[1]刘俊,张斌珍.微弱信号检测技术[M].北京:电子工业出版社,2005.

[2]章克来.微弱信号检测技术 [J].航空电子技术,2009(6):30-36.

ZHANG Ke-lai.Weak signaldetection techmology[J].Avionics Technology,2009(6):30-36.

[3]段江海,宋爱国,王一清.随机共振理论在微弱信号检测中的应用研究[J].信号处理,2003,19(6):569-571.

DUAN Jiang-hai,SONG Ai-guo,WANG Yi-qing.Study on application of stochastic resonance theory in weak signal detection[J].Signal Processing,2003,19(6):569-571.

[4]胡广书.数字信号处理[M].北京:清华大学出版社,2003.

[5]Barragan L A,Artiga J I,Alonso R,et al.modular.Low-cost,digital signal processor-based lock-in card for measuring optical attenuation[J].Review of scientific Instru ments,2011,72(1):247-251.

[6]胡绍民,张广发.一种基于DSP和采样ADC的数字锁定放大器[J].数据采集与处理,2002,15(2): 222-225.

HU Shao-min,ZHANG Guang-fa.Digital lock-in amplifier based on DSP and sampling ADC [J].Journal of Data Acquisition&Processing,2002,15(2): 222-225.

[7]童诗白,华成英.模拟电子技术[M].3版.北京:高等教育出版社,2001.

[8]Cellozzi S,Araneo R,Lovat G.电磁屏蔽原理与应用[M].郎为民,译.北京:机械工业出版社,2009.

[9]李驹光.ARM开发详解[M].清华大学出版社,2004.

[10]Probst P A,Alain Jaquier.Multiple-channel digital lock-in Amplifier with PPM resolution[J].Rev.Sci.instrum,1994,65(3): 747-750.

Design of weak signal decting system based on ARM

ZHANG Ting,QIN Hua-wei
(Institute of Mechanical Engineering,Hangzhou Dianzi University,Hangzhou310018,China)

to extract the weak signal with strong noise background,a scheme which combines hardware with software for realization of this this method is designed.In this method,the signals are detected and processed using the classical instrument magnifying technique and single-chip microcomputer control.The designing of front hardware is optimized to insure the precision of acquiring data.The system adopt ARM accomplishing the arithmetic of digital correlation,improving Signal-to-Noise Rate,acquiring weak signal which sheiled by vast powerful noise.Through the experiment of artificial low-frequency weak-signal detection,the system fully reveals its practicality and validity in the field of weak signal detection.

weak signal; instrumentation amplifier; improving SNR; digital correlation

TM933.2

A

1674-6236(2012)03-0023-05

2011-12-14 稿件编号:201112077

浙江省重大科技专项计划项目(2011C13025)

张 挺(1985—),男,浙江舟山人,硕士研究生。研究方向:机电系统集成与深海装备技术。

猜你喜欢

标定噪声电路
电路的保护
噪声可退化且依赖于状态和分布的平均场博弈
使用朗仁H6 Pro标定北汽绅宝转向角传感器
解读电路
巧用立创EDA软件和Altium Designer软件设计电路
基于MATLAB模拟混沌电路
控制噪声有妙法
基于匀速率26位置法的iIMU-FSAS光纤陀螺仪标定
船载高精度星敏感器安装角的标定
一种基于白噪声响应的随机载荷谱识别方法