为DNA编撰百科全书
2012-04-29李兴
李兴
2000年6月26日,人类有史以来的第一个基因组草图完成。2001年2月12日,中、美、日、德、法、英等6国科学家和美国塞莱拉公司联合公布人类基因组图谱及初步分析结果,发现人类的功能基因只有2~3万个,数量只有人类基因组的1.5%,其余98.5%的大量基因目前还不知道其遗传信息的角色和功能。所以过去曾一度称那些98.5%的功能尚不明确的基因为“垃圾基因”。
但是,新的研究发现,所谓的垃圾基因并非垃圾,而是有着重要的功能。
DNA元件百科全书
伊萨克·牛顿早就说过,自然不行徒劳之举,少已够用,多则何益。既然人类约有30万个基因,它们肯定是“天生我才必有用”,否则就不会在进化中占据人类遗传信息如此大的空间。
于是,在2003年人类基因组计划全部完成之际,研究人员也启动了另一项为DNA撰写百科全书的艰巨任务,探索那些大量的没有功能的基因到底有什么作用。这个计划称为ENCODE,意为DNA元件百科全书,也就是探明人类基因组中的DNA每个元件的功能。正如参与ENCODE项目的英国桑格研究所研究人员珍妮弗·哈罗所说,如果说人类基因组计划提供了一张地图,那么ENCODE计划就是在这张地图上标出了各个基因的功能信息。
这个计划的参与者包括美国、英国、西班牙等5个国家的32个实验室的442位科学家,他们获得并分析了超过15兆兆字节(15万亿字节)的原始数据,目前研究人员已经在《自然》杂志发表6篇文章,在《科学》杂志发表2篇文章,在《基因组研究》杂志发表18篇文章和在《基因组生物学》杂志发表6篇文章,全面公开了ENCODE计划的内容。科学家对147个组织类型进行了分析,以确定哪些特定的基因能开启和关闭,以及不同类型细胞之间的基因“开关”存在什么差异。
研究人员认为,过去所称的垃圾DNA(基因)实际上是一个庞大的控制面板,这个控制面板至少包含有400万个基因的开关,在这个控制面板上可以调控数以百万计基因的活性。如果没有这些开关调控,基因将不能正常工作,这些区域的基因也许就会导致人类患病。因此,人类基因组的基因至少80%以上都是有功能的。
“垃圾”DNA是如何起作用的?
研究人员早就发现,具有共同的基因未必会产生相同的蛋白质产物,关键在于基因能否被激活或激活的程度是强还是弱。例如,同卵双生的孪生子具有完全相同的基因组,但是他们即使在同样的生活环境下也会表现出不同的性格,这是因为他们的基因活性并不相同,同样的基因,有些基因活性大,有些活性小。而基因活性的大小则由另外一些基因开关来控制,这些基因开关在过去就被视为是“垃圾”基因。
那么,“垃圾”基因是如何发挥作用的呢?研究发现,人类基因组中大约一半的DNA由重复性基因片段构成,其中包括转座子,它能换位到基因组内的不同位置,同时还有反转录转座子,可被转录进核糖核酸(RNA),之后被重整入基因组DNA。
人类基因组中最常见的重复序列是Alu,由于这种DNA序列中有限制性内切核酸酶AluⅠ的识别序列AGCT,所以称为Alu重复序列。Alu重复序列也是反转录转座子,它拥有超过100万个拷贝,占据了人类基因组的大约10%。
美国爱荷华大学医学院的研究人员通过研究发现,过去认为无用的重复性Alu序列其实是新的外显子的主要来源。外显子是真核生物基因的一部分,它在剪接后仍会被保存下来,并可在蛋白质生物合成过程中表达为蛋白质,而且外显子是最后出现在成熟RNA中的基因序列,又称表达序列。所以,外显子也就是功能基因或者能调控基因表达的特殊基因。
Alu是灵长类动物特异性的反转录转座子,它可以制造外显子,这些外显子可能有助于形成灵长类动物的独特特性。研究人员使用拥有将近600万个探针的高密度外显子微矩阵技术,用以监测人类所有外显子的表达模式。对所得数据分析后,研究人员发现,11个人类组织中330个外显子是来源于Alu序列。
例如,人类的一种基因SEPN1与肌肉营养失调有关。对比来自黑猩猩和短尾猿组织的数据发现,一个来源于Alu的肌肉特异性外显子是在人类和黑猩猩进化分离后产生的,这个外显子只在人类肌肉中高水平表达,但在任何其他人类组织或非人类灵长类动物组织中均不表达,因而才使人类患肌营养不良疾病。
让功能基因沉默或表达
有时候,“垃圾”基因的功能更重要,因为它们是调控功能基因的基因,它们可以让一些功能基因沉默,也可以让一些功能基因具有很高的活性,进行充分表达,从而产生功能蛋白质。基因的调控手段有一种比较特殊的方式,即对功能基因进行甲基化,如此可以让一些功能基因沉默。相反,如果不对功能基因进行甲基化,就有可能让功能基因获得表达,产生不同的蛋白质。
有一种叫柳穿鱼的花卉,大多是对称的白色花瓣,还有小部分呈现为黄色五角星。一般人面对白色花瓣和黄色五角星的花时,会以为这是两种不同的花卉,但实际上它们是同一种花卉,它们的基因是一模一样的。之所以表现为不同颜色和形状的花卉,不是因为它们的基因不同,而是因为在基因调控中有一些基因被甲基化,这些甲基化的基因就会沉默,不再表达,花朵就变成对称的白色花瓣。而基因没有甲基化时,这种基因就有活性,它所编码的花的颜色和形状也不同,成为黄色五角星花卉。
同时,研究人员发现了大量的由垃圾基因对功能基因进行甲基化的调控。基因的甲基化又称DNA甲基化,是一种对基因的修饰途径。大量研究表明,DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达。
DNA甲基化主要形成5-甲基胞嘧啶(5-mC)和少量的7-甲基鸟嘌呤(7-mG),而DNA的甲基化可引起基因的失活,即沉默。
RNA也像DNA一样携带着遗传信息,研究人员最近发现,信使RNA(mRNA)并非像过去那样被生物学家认为是DNA和蛋白质之间的简单中介,它也会通过腺嘌呤加甲基的方式而被化学性修饰。过去认为,mRNA只含4种核苷碱基。但是,新的发现表明,N6-甲基腺苷(m6A)是mRNA的第五种碱基,它遍布转录子中。20%的人类mRNA可被常规地甲基化,5000多个不同的mRNA分子均含有N6-甲基腺苷,这意味着这种修饰可能广泛地影响着基因如何表达。
例如,mRNA被甲基化就与肥胖有关。有一种与肥胖相关的基因称为FTO,它能编码一种酶,此酶能将mRNA中N6-甲基腺苷逆转到常规腺苷。具有FTO基因突变的人有过度活化的FTO酶,引起N6-甲基腺苷水平低下,食物摄入和代谢异常,从而导致肥胖。全球约10亿人具有FTO突变,此突变是肥胖症及2型糖尿病的主要病因。
现在,研究人员正在研究mRNA的N6-甲基腺苷水平,即甲基化调控是如何与肥胖和糖尿病相联系的,从而可以研制一些药物以抑制FTO的活性,预防和治疗肥胖和糖尿病。
所以,无用的基因并不存在,垃圾基因也并非垃圾,而是另有功能,只是过去人们不知道这些基因的作用而已。当所有DNA元件的功能被探索清楚时,就可以撰写出所有DNA的百科全书。
【责任编辑】张田勘