模式识别课程的教学探索
2011-12-31谭咏
计算机教育 2011年15期
摘要:模式识别是智能科学与技术本科专业的专业基础选修课程之一,属于信息、控制和系统科学的范畴。这门课程要求学生掌握模式识别的基本概念、原理、方法和应用等,了解模式识别的研究现状和发展趋势,对已有成果展开分析与讨论,为进一步的学科探索打好基础。本文介绍了国内外的教学内容、授课方式和学生评价方式,在此基础上对模式识别课程的教学内容、授课方式和评价方式进行了探索。
关键词:模式识别;教学内容;授课方式;评价方式
模式识别是60年代迅速发展起来的一门学科,该技术用于自动将物理对象或抽象的多维模式分类到已知或可能未知的类别。目前,市场已经存在一些能进行字符识别、手写体识别、文档分类、指纹分类、语音和说话人识别、白细胞分类以及其他军事目标识别的商业模式识别系统。低成本、高分辨率传感器(如CCD摄像机、麦克风和扫描仪)和互联网上共享的数据为我们提供了关于文本、语音、图像和视频的巨大数字化资源库,对这些资源进行有效的归档和检索,极大推动了模式识别算法在新领域的应用,例如文本、图像和视频检索,生物信息学和面部识别等。
由于模式识别是一门理论与实践紧密结合的学科,理论基础涉及高等数学、线性代数、数理统计、小样本统计学习理论、模糊数学等学科,因此该课程具有一定的抽象性和难度,学生不容易理解所学内容。为了使学生从抽象中理解具体,更好地、自主地、创新地学习,教师要在知识的传授过程中注重学习方法的传授,故教学探索成为模式识别课程中重要的研讨内容之一。随着社会的发展、国际交流的频繁及网络技术的完善,如何借鉴先进的国外教学理念,更好地培养具有创新能力的学生,也成为教学探索的一个主要问题。
1国内外教学比较
下面就从教学内容、授课方式和学生评价方式三个方面来阐明国内外模式识别教学。
1.1教学内容
模式识别领域的国内外研究者和学者已编著了大量优秀教材,由于篇幅关系,下面仅对部分教材进行简要介绍。
Richard O. Duda等编写的《Pattern Classification》清晰地阐明了模式识别的经典方法和新方法[1]。Sergios Theodoridis编写的《Pattern Recognition》全面阐述了模式识别的基础理论、最新方法以及各种应用[2]。Andrew R. Webb编写的《Statistical Pattern Recognition》对统计模式识别的基本理论和技术作了全面且详尽的介绍[3]。J.P.Marques de Sá编写的《Pattern Recognition:concepts,methods,and applications》详细介绍了有关模式识别的概念和方法,并附加多个领域的实际应用案例[4]。M.Narasimha Murty等编写的《Pattern Recognition:An Algorithmic Approach》讲解了模式识别在算法中应用的主要原则,并对模式识别的概念和最近取得的进步进行了详细介绍[5]。Brian D.Pipley编写的《Pattern recognition and neural networks》对模式识别和神经网络进行了介绍,并给出了模式识别领域的许多实际例子[6]。Satoshi Watanab编写的《Pattern recognition:human and mechanical》为模式识别提供了一个统一的标准,并介绍了该学科的广阔前景[7]。Robert J.Schalkoff编写的《Pattern Recognition:statistical,structural,and neural approaches》探究了模式识别的核心概念、方法和应用[8]。Keinosuke Fukunaga编写的《Introduction to statistical pattern recognition》,每章都含有大量习题[9]。
清华大学的边肇祺教授等编写的《模式识别》主要讨论了统计模式识别理论和方法,还介绍了人脸识别、说话人语音识别及字符识别等应用实例[10]。干晓蓉教授编写的《模式识别》主要内容包括贝叶斯决策理论、概率密度估计、线形判别函数、无监督学习和聚类、特征选择与提取、模糊模式识别、人工神经网络、线形代数、多维随机变量[11]。王碧泉教授等编写的《模式识别:理论、方法和应用》介绍了特征选择、聚类和判别等方面的常用模型和算法,模式识别在地震学、数字图像处理和决策管理等领域中的应用[12]。杨光正教授等编写的《模式识别》介绍统计识别方法和句法方法的基本理论[13]。张学工教授编写的《模式识别》系统地讨论了模式识别的基本概念和代表性方法[14]。齐敏教授等编写的《模式识别导论》按照统计模式识别、句法模式识别、模糊模式识别法和神经网络模式识别法四大理论体系来组织全书[15]。蒋先刚教授编写的《数字图像模式识别工程软件设计》介绍图像模式识别的基础理论和程序实现技术,从工程应用的角度全面介绍了图像模式识别应用软件设计的基本方法和实用技术[16]。孙即祥教授等编写的《模式识别》系统地论述了各类经典的模式识别的理论与方法,较全面地反映了本学科的新近科技成果[17]。
2.2授课方式
国外的授课方式往往注重内容的学习、知识的掌握和学生独立思考。课堂教学理念重参与性、积极性、创造性和灵活性。课堂相对活跃,讲授和讨论相辅相成,学生能积极地参与到课堂教学中,学生参与发问或发表个人意见,课堂上的参与往往是学期分数的一部分,被认为是评估学生所学习的知识的方法,并注重学生是否有能力与教师和同学进行知性的对话。
国内的课堂教学主要以教师讲授为主,学生被动接受,留给学生的自主空间较狭窄,课堂教学理念注重系统性、完整性、逻辑性、生动性、计划性。课堂相对平静,讨论较少,学生加入到课堂教学中的情况不多,学生参与发问或发表个人意见少。
2.3评价方式
国外对学生的培养重经验、过程、体验和运用。学生的学习过程只是其成长的一部分,教师评价学生时十分注重多渠道收集学生在校、在家和参加社会活动的情况,通过综合分析,对学生进行全方位的、细化的评价,其中不仅有教师对学生的评价,还包括学生的自评、学生之间的互评、家长的评价和学生参加社会活动获得的评价。
国内的教学目标是追求知识、结果、记忆和会考试。由于教学中以教师为主,往往只注意知识的传授,忽略了学生能力和全面素质的培养。学生能牢固地掌握知识,但知识运用能力差,主动和创新能力欠缺。教师对学生的评价注重期中、期末考试,忽略了学生参加社会活动的情况。
3教学探索
基于如下的研究结果:有效教学本质上取决于教师建立能够实现预期教育成果的学习经验的能力,而每个学生都参与教学活动是实施有效教学的前提[18],我们从教学内容、授课方式、评价方式三个方面进行模式识别课程的教学探索。
3.1教学内容
教学内容的安排应与本科学生的学习特点和目前所掌握的知识程度相吻合,才能使学生牢固掌握知识。借鉴国内外教学内容情况,我们的模式识别课程的教学内容共分9个章节,分别介绍模式识别纲要、贝叶斯决策理论、极大似然估计和贝叶斯参数估计、隐马尔可夫模型、统计语言模型、支持向量机、最大熵模型、人工神经网络、决策树。
第1章 通过提出问题“智能科学与技术专业的学生为什么要学习模式识别”和“应当怎样学习模式识别课程”展开,具体介绍内容包括模式、模式识别、有监督的分类、无监督的分类、模式识别的主要方法和模式识别系统。
第2章 “贝叶斯决策理论”介绍了在概率结构都知道的理想情况下的模式分类问题。虽然这种情况在实际中很少出现,但它为我们提供了一个能够与其他分类器进行对比的评价依据,即“最优贝叶斯分类器”,帮助我们预测推广到新模式时的最小误差率。
第3章 主要围绕“极大似然估计和贝叶斯参数估计”来展开。在先验概率和类条件概率密度已知的情况下,我们可使用“贝叶斯决策理论”来设计最优分类器。但是在实际应用中,通常不能得到和问题相关的全部概率结构知识,因此我们利用已有的信息,对问题中涉及的先验概率和条件概率函数进行估计,并把估计结果当做实际的先验概率和条件概率,再来设计分类器。
第4章 “隐马尔可夫模型”在解决一些与时间序列相关的问题,即某一过程随着时间的流逝而进行,而且某个时刻发生的事件受到前一时刻发生事件的直接影响中得到了很好的应用,隐马尔可夫模型在语音识别领域的应用是最成功的例子。
第5章 “统计语言模型”是用来计算句子概率的模型,在很多自然语言处理的任务,如机器翻译、语音识别、印刷体或手写体识别、拼写纠错、汉字输入中都有广泛的应用。在独立假设的前提下,句子的概率公式可被简化,并被计算出来。
第6章 “支持向量机”的基本思想是寻找一个能够将d维空间的样本数据准确地分为两个类别的超平面。但是,由于样本数据经常是不可以被线性分割的,所以通过引入核函数,将样本数据映射到一个可以线性分割这些数据的高维特征空间。而将数据映射到这样的一个空间,通常会引起计算和过度适应问题,但是支持向量机在高维空间中不需要直接处理,这就消除了前面提到的顾虑。并且支持向量机不像神经元网络等其他的学习算法,很难衡量其学习的性能,我们能够清楚地计算出其在未知数据集上的VC维。
第7章 “最大熵模型”在对一个随机事件的概率分布进行预测时,满足全部已知的条件,而对未知的情况不进行任何主观假设。因为在这种情况下,概率分布最均匀,预测的风险最小,概率分布的信息熵最大,所以被称为最大熵模型。
第8章 “人工神经网络”是在现代神经科学研究的基础上提出的,它并没有完全真正反映大脑的功能,只是对生物神经网络进行某种抽象、简化和模拟。人工神经网络中的信息处理是通过神经元之间的相互作用来实现的,知识与信息的存储表现为网络元件互连分布式的物理联系,各种神经元连接权系数的动态演化过程决定了人工神经网络的学习和识别。
第9章 “决策树”是一种广泛应用的归纳推理算法,它采用逼近离散值函数的方法,具有很好的健壮性,能根据训练数据学习出析取表达式。决策树学习方法通过搜索一个完整表示的假设空间,从而避免了受限假设空间的不足。
3.2授课方式
遵循学生的认知规律和和学习特点,结合作者从事的模式识别课程教学,我们对模式识别的授课方式给出了如下建议。
首先,教师将不再单纯地讲解,而是引导学生进行学习和组织学生进行课堂活动,使学生由原来的单纯听讲、被动接受灌输转变为主动参与课堂教学,亲自去发现结论和规律,使学生学会思考和善于思考,培养学生分析和解决问题的能力。通过教师和学生互相提问和共同讨论,来发挥学生的主动性,使两者在教学过程中相互联系和作用,教学过程成为双方主动介入的过程。由于模式识别具有一定的抽象性和难度,因此教师讲解时要尽可能通过实例引出问题,让学生亲睹实例,增加感性认识,通过图像、动画和视频的生动画面和声音吸引学生的注意力,将抽象的理论形象化,使学生印象深刻而又便于理解。
其次,教师在传授知识的同时也应该力所能及地帮助学生解决在生活、学习过程中遇到的疑问,对他们提出的问题给予认真、耐心的解答,帮助他们克服困难。教师在教学过程中留出一定的时间,以朋友的身份和学生交流,了解他们的想法,从中获得一些好的意见和建议。
再次,在讲解理论部分时,教师应该理论联系实际,注重学生实践能力的培养。适当引入一些实际生活的例子,帮助学生理解所学知识,如介绍最大熵模型,可使用“投资时不要把所有的鸡蛋放在一个篮子里,这样可以降低风险”的例子,使学生对模型的认识不再抽象。简要告诉学生下次课的内容,鼓励学生课后查阅相关资料,并对遇到的问题进行分析和解决,带着问题参与下一次的课堂教学。针对每一章的授课内容,教师应精心设计和安排相关实验,加深和巩固学生所掌握的知识。
3.3评价方式
模式识别是智能科学与技术专业的一门重要专业基础选修课,对学生将来的学习、工作都起着非常重要的作用。该课程不仅仅是让学生掌握知识,更重要的是培养学生的能力。因此,教师应该积极鼓励学生多参加社会实践,评价时应从多渠道和多方面收集学生在校和参加社会活动的信息,通过综合分析,对学生做出全方位的、细化和合理的评价,促进学生全面素质的培养,最终提高学生的创新能力。
4结语
模式识别是一门理论与实践紧密结合的学科,教与学的方式值得我们研究和探索。在今后的教学工作中,我们要多从模式识别理论涉及的学科广泛,而本科生目前还没有完全掌握这些知识等特点出发,不断改革、实践和创新。同时,教师也要不断提高自身素质和业务水平,不断提高课堂教学质量,为国家培养更多合格的应用型本科人才。
参考文献:
[1] Richard O. D