APP下载

网络智能教学系统中双层学生模型的设计

2011-12-29郝耀军王建国赵青杉

中国远程教育 2011年12期

  【摘 要】
   本文探讨了在网络智能教学系统中建立一个双层动态学生模型的方法,模型的初始层采用复合认知型学生模型,高级层利用Hopfield神经网络算法,在初始层数据的基础上加入兴趣、爱好、知识状态、学习历史等信息进行评价、分类。该模型克服了单一学生模型结构数据处理的障碍,能够灵活、全面地对学生的学习特征进行分析,有效改善了智能网络教学系统的教学决策过程。
  【关键词】 学生模型;智能教学系统;Hopfield神经网络
  
  【中图分类号】 G434 【文献标识码】 A 【文章编号】 1009—458x(2011)12—00645—04
  引 言
  目前,网络教学系统正向着智能化的方向发展,智能化的主要目标是解决现代远程教学中的个别化教学问题,提高系统对学生的适应性和针对性[1]。
  网络智能教学系统中的学生模型(Student Model)是个别化教学决策的依据,是适应性教学中“因材施教”的“材”的量化标准。学生模型是指在智能教学系统中根据需求构造出的一种能可靠表示学生认知特征的数据结构,记录着学生对知识的掌握程度和个人的学习水平,是学生知识结构和认知特征的反映。学生模型一般依据学生和系统之间的交互及应答历史而形成,可以根据学生的学习情况动态地修改。
  在国外的相关研究中,有的学者用贝叶斯网络建立学生模型,进行个性化教学推理[2];有的学者利用对话来获得学生对领域知识的掌握程度,从中分析学生学习的速度、掌握程度以及记忆能力,采用一定策略对学生实施个别化教学[3];也有的学者通过对学生学习某个主题的评价,来判断该学生是否可以进入下一个主题的学习[4]。在国内,刘宇,解月光对CELTS-11学习者模型规范进行了取舍、组合,利用模糊评价方法对学生的认知能力进行评判[5]。在最近的研究中,孙中红提出基于决策树的遗传算法,将学生的学习标准、兴趣、爱好、知识状态、学习历史、心理因素和认知能力等信息进行数据挖掘和分类,从而构建一个综合覆盖模型、偏差模型、认知型模型或是几种模型组合的全面学生模型[1]。郭富强从学习者个体学习情况和学习需求出发,在研究分析影响学习者的学习基础、认知能力、心理因素的基础上,设计了学生模型,并给出了学生模型的动态调整算法[6]。
  本文设计的双层动态学生模型是基于网络的SQL查询语言智能教学系统,它采用任务驱动的个性化学习方式,以模拟在线实验为平台,同时提供学习资源、实例演示与综合测试等服务。SQLlearning学习系统因其实验交互、智能引导等特点在实践应用中取得了较好的效果。
  一、双层动态学生模型的工作原理
  在SQLlearning中双层动态学生模型的工作原理如图1所示,学生登录系统后,利用双层动态学生模型智能引导学生的实验、学习、测试等活动,系统一般选用学生模型的高级层驱动相应数据库,生成用户的个性化实验任务、测试题目、学习资源等,而对于未经高级层处理或网络条件不允许进行高级层处理的学生模型则选用初始层参数。
  一般来说,高级层的处理过程是在搜集了一定量的初始层学生模型参数后,经Hopfield网络处理生成标准化模型库,进行评价、分类,并将结果取样到样本库、存储到评价库的过程。
  
  
  二、初始层——复合认知型学生模型
  初始层采用轻量化数据设计,结合认知型学生模型的特点,在SQLlearning系统中设计了如下的数据结构来记录学生的认知能力:
  SM={Knowle