APP下载

Si(100)衬底上(110)取向La2/3Sr1/3MnO3薄膜的制备与性能

2011-12-14李廷先王光明郭宏瑞李扩社李喜露周文龙

中国有色金属学报 2011年11期
关键词:氧压失配衬底

李廷先, 张 铭, 王光明, 郭宏瑞, 李扩社, 李喜露, 周文龙, 严 辉

(1.北京工业大学 材料学院,北京 100124;2.北京有色金属研究总院 稀土材料国家工程中心,北京100088)

掺杂的稀土锰酸盐化合物由于具备庞磁电阻效应,以及在磁电子学上的潜在应用,可以用于磁场传感器、磁存储器件和磁盘读出头等领域,引起了人们极大的研究兴趣[1-4]。其中的La2/3Sr1/3MnO3由于具有高于室温的居里温度和半金属特性,成为这些材料中的研究热点[1]。为了满足上述应用,La2/3Sr1/3MnO3应被制备成薄膜形式。 目前,大多数La2/3Sr1/3MnO3薄膜为(001)取向,有研究者发现,(110)取向的掺杂锰氧化物薄膜具有优于(001)取向薄膜的磁学性质[2-4],如较高的饱和磁化强度和居里温度以及较薄的界面磁学死层等[2-7]。因此,基于(110)取向La2/3Sr1/3MnO3薄膜磁电器件的性能应优于基于(001)取向器件的性能。

尽管国内外研究小组已经在 SrTiO3(STO)和LaAlO3(LAO)单晶衬底上成功沉积了(110)取向La2/3Sr1/3MnO3薄膜[5,8-10],但是,相对于Si衬底,这些衬底价格过于昂贵,而且很难与传统的半导体工艺兼容[11],制约了La2/3Sr1/3MnO3薄膜在器件上的应用。直接沉积在Si上的La2/3Sr1/3MnO3薄膜一般是多晶的,没有明显的择优取向,为了获得择优取向,往往需要在衬底和薄膜之间沉积复杂的缓冲层,从而加大工艺的复杂性。在本研究中,不加任何缓冲层,采用脉冲激光沉积技术,通过调节氧压,在Si(100)衬底上沉积了(110)择优取向的 La2/3Sr1/3MnO3薄膜,研究了氧压对薄膜的取向、表面形貌、磁学和电输运性能的影响。

1 实验

1.1 样品制备

多晶La2/3Sr1/3MnO3粉末采用固相反应法制备,实验原料为化学纯 La2O3、SrCO3和 MnO2粉末。所得La1-xSrxMnO3粉末经 500 MPa压力压制成直径为 30 mm的圆片,并在1 400 ℃下高温烧结4 h得到脉冲激光镀膜用靶材。实验所用PLD系统由两部分组成:一部分为中科院沈阳科学仪器厂生产的 PLD-Ⅱ型沉积系统,另一部分为德国Coherent公司生产的Compex Pro 205 F型KrF准分子激光器,激光波长248 nm,脉冲宽度25 ns,激光能量频率可调,激光束经透镜聚焦后导入沉积腔内。

(100)取向的Si片按甲苯、丙酮、乙醇的顺序各超声清洗15 min,放入沉积腔体之前在HF与水的体积比为1∶4的溶液中浸泡2 h除去表面的SiO2。沉积前,先将腔内气压抽到4×10-4Pa,然后通入O2气,开始激光沉积薄膜,氧压 1~50 Pa。试验过程中脉冲激光频率固定在5 Hz,靶与衬底之间的距离为50 mm,衬底温度700 ℃,沉积时间5 min,薄膜厚度约50 nm。沉积结束后,所有样品均在1 kPa氧压的气氛中原位退火30 min。

1.2 测试

薄膜样品的晶体结构和取向用 Bruker-D8 Advance型X射线衍射仪(Cu Kα,0.154 060 nm)表征。薄膜厚度用Seimitzu Surfcom 480A profiler台阶仪检测。用Hitachi S3500N扫描电子显微镜和Solver P47 Pro原子力显微镜观察薄膜的表面形貌,薄膜的磁学性能和电输运性能用PPMS测试(Quantum Design Inc,PPMS-9),测试磁场方向平行于薄膜表面。

2 结果与讨论

在氧压分别为1、5、10、20和50 Pa的条件下制备了 La2/3Sr1/3MnO3薄膜,薄膜厚度经 Seimitzu Surfcom 480A profiler台阶仪测试约200 nm。图1所示为不同氧压下沉积的 La2/3Sr1/3MnO3薄膜的 XRD谱。从图1可以看出,除沉积氧压为1 Pa的样品外,其他薄膜都呈现结晶状态。其中5 Pa氧压下薄膜无明显的择优取向,10 Pa氧压下沉积的薄膜具有(110)择优取向,衍射峰的积分强度最高。氧压大于10 Pa后,随着氧压的升高,(110)衍射峰的积分强度逐渐降低,当沉积氧压为50 Pa时,(110)取向的衍射峰几乎消失。

图1 不同氧压下沉积的La2/3Sr1/3MnO3薄膜的XRD谱Fig.1 XRD patterns of La2/3Sr1/3MnO3 films directly deposited on Si substrate at various oxygen pressures

为了解释 La2/3Sr1/3MnO3薄膜沿(110)方向生长的现象,计算La2/3Sr1/3MnO3薄膜和Si衬底之间的晶格失配度(λ),其计算公式如下:

式中:af和as分别是薄膜和衬底的晶格常数。Si的晶格常数是0.543 nm,La2/3Sr1/3MnO3的是0.388 nm。通过计算发现,Si(100)面和La2/3Sr1/3MnO3(100)面的晶格失配是7.2%;而在 La2/3Sr1/3MnO3(110)面内,沿〈110〉和〈001〉晶向的原子间距分别是0.546和0.579 nm,与Si(100)面的〈010〉和〈001〉晶向的失配度为 0.5%和6.6%,小于Si与La2/3Sr1/3MnO3(001)面之间的晶格失配度。因此,La2/3Sr1/3MnO3在 Si衬底上易于沿(110)方向生长。

图2所示为 La2/3Sr1/3MnO3薄膜(110)峰的衍射角2θ和半高宽(Full width at half maximum, FWHM)随氧压的变化情况。(110)择优取向 La2/3Sr1/3MnO3薄膜的FWHM值在沉积氧压10 Pa时最小,氧压大于10 Pa时,随着压强的升高,FWHM值增大,这说明该工艺条件下制备的La2/3Sr1/3MnO3薄膜的结晶质量最好。随着氧压的升高,(110)取向 La2/3Sr1/3MnO3薄膜的结晶度降低。主要原因有以下两个:首先,当沉积氧压较低时,由于缺氧容易导致薄膜中氧含量偏离正常化学比,导致晶格常数小于正常化学比时的晶格常数。随着环境氧压的升高,晶格中氧含量增加,薄膜晶格常数有增大的趋势[12]。在本研究中,随着环境氧压的升高,更多氧原子混入生长中的La2/3Sr1/3MnO3薄膜,导致La2/3Sr1/3MnO3晶格常数变大。氧压越高,混入薄膜晶格中的氧原子越多,薄膜的晶格常数逐渐增大。使Si(100)面和La2/3Sr1/3MnO3(110)面的晶格失配在10 Pa氧压时达到最小值。此时的 La2/3Sr1/3MnO3薄膜具有(110)择优取向,结晶质量最好。这个现象可以用(110)衍射峰的位置随氧压的变化来解释,如图2所示,(110)择优取向 La2/3Sr1/3MnO3薄膜的(110)峰的位置随着氧压的增加向小角度方向移动,根据布拉格公式

式中:d为晶面间距;θ为衍射角;λ为X射线波长;n为正整数。衍射角的减小意味着晶面间距的增大,也就是晶格常数的变大,即La2/3Sr1/3MnO3晶格常数随氧压的增大而增大,导致Si(100)面和La2/3Sr1/3MnO3(110)面的晶格失配度在10 Pa氧压时达到最小值,结晶质量最高。 而当沉积氧压为1 Pa时薄膜呈现非晶状态,与氧缺乏导致的氧偏离化学计量比有关。

图2 (110)衍射峰的角度与半高宽(FWHM)随氧压的变化曲线Fig.2 Oxygen pressure dependence of diffraction peak and FWHM for (110)peak

另一个可能的原因来自于沉积过程中氧原子与剥蚀粒子之间的碰撞。根据原子碰撞机制[13-15],随着环境氧压的增加,由于与氧原子的频繁碰撞,到达衬底表面的剥蚀粒子能量降低,使粒子没有足够的能量扩散至稳定的晶格位置[16],导致薄膜的结晶质量下降。

图3所示为不同氧压下沉积的La2/3Sr1/3MnO3薄膜表面的SEM像。由图3可知,10 Pa氧压下沉积的La2/3Sr1/3MnO3薄膜晶粒尺寸约50 nm,颗粒大小均匀、分布致密、颗粒间空隙小。随着氧压的升高,薄膜的晶粒尺寸变小。

用原子力显微镜研究了薄膜的表面形貌和粗糙度,如图4所示,所有薄膜均显示颗粒状结构,10 Pa氧压时晶粒大小分布均匀,晶粒之间排布紧密。随着氧压的升高,晶粒尺寸变小。

薄膜中的晶粒大小和晶粒尺寸分布与到达薄膜表面沉积原子的能量有关,这些到达薄膜表面的原子对薄膜表面碰撞剥蚀减小晶粒尺寸,使晶粒之间排列变得疏松;或者经表面扩散进入晶格位置,使晶粒进一步增大。当氧压低于10 Pa时,沉积原子进入晶格位置,使薄膜晶粒增大的效应大于表面剥蚀造成的晶粒减小的效应。反之,当氧压高于10 Pa时,沉积原子进入晶格位置使薄膜晶粒增大的效应小于表面剥蚀使晶粒减小的效应。最终使得10 Pa氧压下沉积样品的晶粒尺寸最大。

用AFM仪器自带的NoVa RC1软件计算了薄膜的均方根粗糙度(Rrms)。均方根粗糙度(Rrms)由下式定义

式中:Zi是第i个数据点的垂直高度;Za是所有点高度的算术平均值。

在 50、 20、 10和 5 Pa氧压下沉积的La2/3Sr1/3MnO3薄膜的均方根粗糙度(Rrms)如图5所示。可以发现,10 Pa氧压下沉积的薄膜具有最小的Rrms值1.35 nm。由于吸附原子到达某确定晶面的稳定晶格位置需要克服相应的势垒,而氧压增大时吸附原子能量减小,使吸附原子没有足够的能量克服这个势垒到达该晶面的稳定位置,从而使新核的形成,导致薄膜表面的平整度降低,Rrms增加。氧压为5 Pa时薄膜的Rrms比10 Pa的略高,这与薄膜变成(110)择优取向有关,与 WANG等[17]报道的薄膜表面粗糙度随薄膜沿某个晶面择优取向生长而降低一致。

图3 不同氧压下沉积的La2/3Sr1/3MnO3薄膜的SEM像Fig.3 SEM images of pulsed laser deposited La2/3Sr1/3MnO3 films grown at various oxygen pressures: (a)5 Pa; (b)10 Pa; (c)20 Pa;(d)50 Pa

图4 不同氧压下沉积的La2/3Sr1/3MnO3薄膜的3D-AFM像Fig.4 3D-AFM images of pulsed laser deposited La2/3Sr1/3MnO3 films grown at various oxygen pressures: (a)5 Pa; (b)10 Pa; (c)20 Pa; (d)50 Pa

图6所示为温度为300 K时La2/3Sr1/3MnO3薄膜的磁滞回线。由图6可看出,10 Pa氧压下制备的(110)取向薄膜的饱和磁化强度约105.5 kA/m;5 Pa氧压下制备的无择优取向薄膜的饱和磁化强度约75.5 kA/m。由于(110)取向生长的La2/3Sr1/3MnO3薄膜与Si衬底的晶格失配小,晶格失配造成的垂直于薄膜生长方向的拉应变小,而无明显择优取向生长的 La2/3Sr1/3MnO3薄膜由于较大的拉应变导致晶格畸变增加,破坏了磁畴方向的一致性,使体系的磁有序度降低,从而降低了饱和磁化强度。因此,(110)取向薄膜具有较高的饱和磁化强度。

图5 La2/3Sr1/3MnO3薄膜的均方根粗糙度随氧压的变化Fig.5 Oxygen pressure dependence of root mean square values of La2/3Sr1/3MnO3 film

图6 不同氧压下沉积的 La2/3Sr1/3MnO3薄膜的室温磁滞回线Fig.6 Room temperature M—H curves of La2/3Sr1/3MnO3 film deposited at different oxygen pressures

图7所示为 La2/3Sr1/3MnO3薄膜的R—T曲线,1 Pa氧压下制备的无定形La2/3Sr1/3MnO3的R—T曲线如7(b)所示,薄膜在整个测量温度区间显示绝缘体行为,电阻随温度的升高而降低。5 Pa和10 Pa氧压下制备的结晶态的薄膜在250 K左右存在明显的金属绝缘体相变,且10 Pa氧压下制备的(110)择优取向薄膜,具有高于5 Pa氧压下制备的La2/3Sr1/3MnO3薄膜的绝缘体-金属相变温度和低的电阻,与文献[18-19]报道一致。

图7 不同氧压下沉积的La2/3Sr1/3MnO3薄膜的电阻随温度变化Fig.7 Temperature dependence of resistivity for La2/3Sr1/3MnO3 films at different oxygen pressures

10 Pa氧压下制备的(110)取向La2/3Sr1/3MnO3薄膜的晶粒尺寸相对较大,晶粒大小分布均匀,因此,晶界散射对载流子输运造成的影响小,使该条件下的薄膜具有较低的电阻率;另一方面,自旋无序散射对电阻的贡献由于饱和磁化强度的升高而减小,因而使(110)取向薄膜的电阻率下降。此外,由晶格失配造成的拉应变,(110)取向薄膜小于无择优取向薄膜,使薄膜中 Mn3+和 Mn4+之间的双交换作用强于无择优取向薄膜,因此(110)取向薄膜的TMI略高于无择优取向薄膜的。

3 结论

1)在 10 Pa氧压下沉积的(110)取向的La2/3Sr1/3MnO3薄膜具有较高的结晶质量、均匀的晶粒大小和致密的微结构。且随着氧压的增加,结晶质量下降,晶粒分布变得不均匀,微结构变得疏松。

2)AFM测量结果显示,在10 Pa氧压下沉积的(110)择优取向 La2/3Sr1/3MnO3薄膜具有最小的均方根粗糙度Rrms值。

3)与无择优取向薄膜相比, (110)取向薄膜具有较高的饱和磁化强度和金属绝缘体相变温度以及较低的电阻率。

[1]RAMIREZ A P.Colossal magnetoresistance [J].Journal of Physics: Condensed Matter, 1997, 9: 8171-8199.

[2]BERNDT L M, BALBARIN V, SUZUKI Y.Magnetic anisotropy and strain states of (001)and (110)colossal magnetoresistance thin films [J].Applied Physics Letters, 2000, 77: 2903-2905.

[3]BOSCHKER H, MATHEWS M, HOUWMAN E P,NISHIKAWA H, VAILIONIS A, KOSTER G, RIJNDERS G,BLANK D H A.Strong uniaxial in-plane magnetic anisotropy of(001)and (011)-oriented La0.67Sr0.33MnO3thin films on NdGaO3substrates [J].Physical Review B, 2009, 79: 214425.

[4]PI L, ZHU H, XU X J, ZHANG Y H.Effect of the substrate orientation on the transport properties of La0.67Sr0.33MnO3epitaxial films [J].Chinese Physics Letters, 2001, 18: 111-113.

[5]VEIS M, VISNOVSKY S, LECOEUR P, HAGHIRI-GOSNET M, RENARD J P, BEAUVILLAIN P, PRELLIER W, MERCEY B, MISTRIK J, YAMAGUCHI T.Magneto-optic spectroscopy of La2/3Sr1/3MnO3films on SrTiO3(100)and (110)substrates [J].Journal of Physics D: Applied Physics, 2009, 42: 195002.

[6]MINOHARA M, FURUKAWA Y, YASUHARA R,KUMIGASHIRA H, OSHIMA M.Orientation dependence of the schottky barrier height for La0.6Sr0.4MnO3/SrTiO3heterojunctions [J].Applied Physics Letters, 2009, 94: 242106.

[7]MA J X, LIU X F, LIN T, GAO G Y, ZHANG J P, WU W B, LI X G, SHI J.Interface ferromagnetism in (110)-oriented La0.7Sr0.3MnO3/SrTiO3ultrathin superlattices [J].Physical Review B, 2009, 79: 174424.

[8]QI X Y, MIAO J, DUAN X F, ZHAO B R.Microstructure of La0.7Sr0.3MnO3/Ba0.7Sr0.3TiO3/La0.7Sr0.3MnO3epitaxial films grown on (001)SrTiO3substrate [J].Journal of Crystal Growth,2005, 277: 218-222.

[9]LIANG Y C, LIANG Y C.Strain-dependent surface evolution and magneto-transport properties of La0.7Sr0.3MnO3epilayers on SrTiO3substrates [J].Journal of Crystal Growth, 2007, 304:275-280.

[10]金克新, 谭兴毅, 赵省贵, 陈长乐.LaAlO3(100), (110)和(111)衬底上La0.7Sr0.3MnO3薄膜的输运和光诱导特性研究[J].中国稀土学报, 2008, 26(12): 709-712.JIN Ke-xin, TAN Xing-yi, ZHAO Sheng-gui, CHEN Chang-le.Transpot and photoinduced properties of La0.7Sr0.3MnO3thin films deposited on LaAlO3(100), (110)and (111)substrates[J].Journal of the Chinese Rare Earth Society, 2008, 26(12):709-712.

[11]VISPUTE R D, TALYANSKY V, TRAJANOVIC Z,CHOOPUN S, DOWNES M, SHARMA R P, VENKATESAN T,WOODS M C, LAREAU R T, JONES K A, ILIADIS A.High quality crystalline ZnO buffer layers on sapphire (001)by pulsed laser deposition for Ⅲ—Ⅴnitrides [J].Applied Physics Letters,1997, 70: 2735-2737.

[12]ZHU Y T, BALDONADO P S, PETERSON E J, PARK Y S,MANTHIRAM A, BUTT D P, PETERSON D E, MUELLER F M.Variation of oxygen content and crystal chemistry of YBa4Cu3O8.5+δ[J].Physica C, 1998, 298: 29-36.

[13]THORNTON J A.The microstructure of sputter-deposited coatings[J].Journal of Vacuum Science and Technology A.1986,4: 3059-3065.

[14]ESTE G, WESTWOOD W D.Stress control in reactively sputtered AlN and TiN films [J].Journal of Vacuum Science and Technology A, 1987, 5: 1892-1897.

[15]NIX W D.Mechanical-properties of thin films[J].Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1989, 20: 2217-2245.

[16]ZHANG J, CUI D F, LU H B, CHEN Z H, ZHOU Y L, LI L.Structural behavior of thin BaTiO3film grown at different conditions by pulsed laser deposition [J].Japanese Journal of Applied Physics: Part 1, 1997, 36: 276-283.

[17]WANG C, CHENG B L, WANG S Y, LU H B, ZHOU Y L,CHEN Z H, YANG G Z.Effects of oxygen pressure on lattice parameter, orientation, surface morphology and deposition rate of (Ba0.02Sr0.98)TiO3thin films grown on MgO substrate by pulsed laser deposition [J].Thin Solid Films, 2005, 485: 82-89.

[18]MURUGAVEL P, PADHAN P, PRELLIER W.Effect of oxygen pressure on the interface related magnetic and transport properties of La0.7Sr0.3MnO3/BaTiO3super-lattices [J].Journal of Physics: Condensed Matter, 2006, 18: 3377-3384.

[19]SIGNORINI L, RIVA M, CANTONI M, BERTACCO R,CICCACCI F.Epitaxial La2/3Sr1/3MnO3thin films with unconventional magnetic and electric properties near the Curie temperature [J].Thin Solid Films, 2006, 515: 496-499

猜你喜欢

氧压失配衬底
基于无差拍电流预测控制的PMSM电感失配研究
锌常规法—氧压浸出联合冶炼技术研究
硅衬底LED隧道灯具技术在昌铜高速隧道中的应用
矿用压缩氧自救器氧压表的检定装置设计
硫化铜精矿氧压浸出回收电积铜的工艺研究*
沉积氧压对RuVO2合金薄膜结构及MIT特性的影响研究
基于特征分解的方位向多通道SAR相位失配校正方法
大尺寸低阻ZnO单晶衬底
大尺寸低阻ZnO 单晶衬底
大尺寸低阻ZnO 单晶衬底