APP下载

硒的伏安行为及测定的研究进展

2011-06-12王瑞侠周享春陆光汉

武汉工程大学学报 2011年12期
关键词:痕量伏安法测定

王瑞侠,周享春,陆 蓉,陆光汉

(1.池州学院化工系,安徽 池州 347000;2.长江大学化学环境工程系,湖北 荆州 434023;3.武汉职业技术学院旅游系,湖北 武汉 430074;4.武汉华中师范大学化学系,湖北 武汉 430079)

0 引 言

硒是人体必需要的微量元素之一,具有预防和抑制肿瘤的作用.硒为电子及冶金工业领域所使用,所以硒的分析显得特别重要.硒和碲都是多价元素,对于碲的电化学行为笔者已作综述[1-2].由于硒变价的多样性,导致电化学反应的复杂性.它们表现出特殊的电化学性质.硒可以与某些金属生成金属互化物,也可以生成硒的络合物,还可以生成H2Se等氢化物,溶出伏安法[3]就是利用这些特性建立起硒的电化学分析法.笔者在此对硒的阳极和阴极溶出伏安法的行为作出评述.

1 硒同金属离子形成互化物的伏安行为

用伏安法(悬汞电极作工作电极)测定Se(IV)[4]时,一般是先在一定电位下富集,然后溶出,产生溶出电流.电极反应式为:

H2SeO3+4H++Hg+4e→HgSe+3H2O

HgSe+2H++2e→H2Se+Hg

文献[5]用玻碳汞膜电极作为工作电极,在0.1 mol/L HClO4-0.1 mol/L KCl介质中,Se(IV)在-0.1 v(vs·SCE)电解,硒形成难溶的HgSe,阴极溶出时,富集在电极上的HgSe还原电极反应如下:

H2SeO3+6H++6eH2Se+3H2O

Hg+H2SeHgSe+2H++2e

HgSe+2H++2eH2Se+Hg

其他工作见文献[6-15]和表1.

为了提高测定灵敏度,利用硒与其他金属离子生成金属互化物的性质,在测定体系中引入金属离子(如Pb2+,Cu2+,Hg2+等),如在测定体系中加入Cu2+[16],Cu2+与Se(IV)生成金属互化物,反应如下:

Se(IV)+2Cu(Hg)+4e→Cu2Se(Hg)2

然后再溶出:

Cu2Se(Hg)2+2H++2e→H2Se+2Cu(Hg)

这种方法灵敏度大大提高.文献[16]的检测限达9×10-10mol/L.除了加上述金属离子外,还可以加入稀有金属离子,Wang[25]在0.1 mol/L H2SO4-10 μg/L Rh(Ⅲ)体系中,在-0.2 V集时,发生下述电极反应:

3H2SeO3+12H++2Rh(Ⅲ)+18e→Rh2Se3+9H2O

产生的伏安响应在-0.97 V检测限达6×10-12mol/L.

在0.3 mol/L HCl-75PPbRh(Ⅲ)体系中,由于变价硒的复杂性,Se(IV)的伏安行为与Wang不一样.硒与介质的组分生成混合络合物,并产生氢催化波[17].Se(IV)于-0.2 v(vs·Ag/AgCl)沉积,Se(IV)被还原成Se(-Ⅱ),接着Se(-Ⅱ)与Rh(Ⅲ)等生成混合络合物:

当电位扫描-1.15 V(vs·Ag/AgCl),发生下面电极反应:

表1 硒的伏安行为

产生的电流是催化氢波引起的,产生催化氢波的原因是混合络合物吸附在汞电极表面,使电极表面得到修饰,H+放电电位正移.又因为下列反应发生:

产物又回到电极上放电,形成催化循环而增大电流,产生灵敏的催化氢波,检测限达2.4×10-12mol/L.用铜汞齐[18]作工作电极,测定硒时发生下述电极反应:

沉积:Cu2++2e+Hg→Cu(Hg)

2Cu(Hg)+H2SeO3+4H++4e→Cu2Se(Hg)2

溶出:Se(Hg)2+2H++2e→H2Se+2Cu(Hg)

检测限达0.25 nmol/L.

文献[19]考虑到汞害和环境污染的问题,用碳金膜电极微分阳极溶出伏安测定水中痕量Se(Ⅳ)和Se(Ⅵ),在0.5 mol/L HNO3底液中,于-0.4 V(vs·SCE)电积,然后溶出,其过程如下:

该方法检测限达5×10-10mol/L.

其他工作见表2[26-33].

表2 在不同物质存在下硒的阴极溶出伏安测定

2 硒络合物的伏安行为

如文献[20]研究了在R-B缓冲溶液中,硒(Ⅳ)与邻苯二胺(O-PDA)体系的示差脉冲吸附伏安行为.Se(Ⅳ)在溶液中先与O-PDA生成络合物,该络合物吸附在汞电极上,然后溶出,其电极反应式如下:

Se(Ⅳ)-O-PDA(ads)(Hg)+4e→Se(O)-O-PDA(ads)(Hg)

该方法灵敏度高,检测限可达5.0×10-10mol/L,用此法测定了人发中微量硒.

文献[21]在0.1 mol/L HCl-1.0×10-3二氨基萘(DAN)体系中,Se(Ⅳ)-DAN络合物在+0.05 V(vs·SCE)富集,Se(Ⅳ)+DAN→[Se(Ⅳ)-DAN]吸附

在-0.06 V(vs·SCE)Se(Ⅳ)还原成Se(0),与汞生成金属互化物.

[Se(Ⅳ)-DAN]+4e+Hg→SeHg+DAN吸附

在-0.46 V(vs·SCE)进一步还原成Se(-II).

SeHg+2H++2e→H2Se+Hg

该方法的检测限达到1×10-8mol/L.

文献[22]报道了在0.1 mol/L HCl-4-苯二胺(4N0PD)溶液中,Se(III)与4N0PD发生反应.

汞电极上HgSe进一步还原为:

HgSe+2H++2e→H2Se+Hg

该方法的检测限7.6×10-10mol/L.

文献[23]利用3,5-二溴代邻苯二胺在弱酸(0.1 mol/L HNO3)介质中与硒反应生成4,6-二溴代苯硒胺,该络合物有电活性,电极反应机理为:

得出:

由于汞(膜)电极对人体有害,而镀金膜电极要耗掉贵重的黄金.

而铋膜玻碳电极电位窗口宽,溶出峰分辩力强,对溶解氧不敏感,实验时不必除O2,方便了实验操作.而且铋膜电极是对环境友好的电极,铋膜电极的使用,使溶出伏安的技术得到改进和发展,近几年各种修饰电极在溶出伏安法中的应用[33-35],使得该方法具有更多的实际应用价值和良好的发展空间.文献[24]采用铋膜玻碳电极作为工作电极在HAC-NaAc~氨基苯(ABSA)(pH2.9)的体系中测定硒.测定的原理是Se(Ⅳ)与ABSA生成络合物,由于该络合物具有强烈的吸附性,吸附在铋膜电极上的络合物进行电还原,产生溶出电流.检测限达1.3×10-8mol/L.

电极反应机理如下:

2ABSA+H3SeO3+2H+→ABSA-Se-ABSA+3H2O

Se(Ⅳ)(ABSA)2+Bi→Se(Ⅳ)(ABSA)2(ads)(Bi)

Se(Ⅳ)(ABSA)2(ads)(Bi)+4e→Se(0)(ABSA)2(ads)(Bi)

文献利用在0.5 mol/L HCl-0.5 mol/L Kl溶液中,Se(Ⅳ)与I-作用生成Se-I2络合物[37],该络合物富集在汞电极上,吸附在汞电极上的Se(0)被还原成Se(-II)产生电流.实际上Se-I2络合物1951年就有作者把它用来测定海水中硒(光度法),但用在溶出伏安法测定微量硒的确是一种创新.

其他生成硒络合物的溶出伏安法见文献[38-40].

文献[41]用铋膜石墨电极测定硒时,产生一催化氢波,电位为1 150 mV(vs·Ag/AgCl),并被实验证明的确为一催化氢波;作者用同样的催化氢波体系测定了另一元素[42].

还有方法把阴极溶出伏安与催化极谱联用,使测定灵敏度大为提高.它的原理是在一定的电位下富集,然后把电极放入有催化体系的溶液中,电极反应如下:

电沉积:Hg+H2SeO3+4H++4e→HgSe+3H2O

溶出:HgSe+2H++2e→Hg+H2Se

生成的H2SeO3又在电极上还原,产生很大的催化电流,灵敏度达到7.0×10-10mol/L.

为了提高灵敏度,有方法先把硒富集在一个载体上[43-44],然后进行收集,再用伏安法测定.实践证明,用伏安法测定硒是一简单可行的方法,特别在研究其反应机理方面更有特色.

3 结 语

由于溶出伏安法可以有效地提高灵敏度,降低检测限,溶出伏安仪价廉,它是目前乃至今后相当长时间内测定微量硒的主要方法之一.但任何一种分析方法都有不足,溶出伏安法存在最大的难题是工作电极的表面(特别是固体电极)的污染,影响了电极的稳定性.随着使用方便的电化学敏感电极深入研发,前处理样品方法联用、清洗和再生电极表面的技术不断改进,测定硒体系不断的更新以及电极反应机理的深入研究,必将使伏安法技术得到新的发展.

参考文献:

[1]陆光汉,黄渝卿.碲的极谱分析概况[J].冶金分析,1990,10(3):29-32.

[2]陆光汉,何治柯,刘传银.溶出伏安法测定碲的概况[J].冶金分析,1992,12(4):37-39.

[3]Achterberg E P,Barriacla J L,Braungardt C B.Cathodic stripping voltammetry[J].Encycloped of analytical science,2005(2):203-211.

[4]Danielc S.Anodic stripping voltammetry[J].Encycloped of analytical science,2005(2):197-202.

[5]邹家庆,罗平,宋军,等.1.5次微分阴极溶出伏安法测定水样中痕量硒[J].南京化工大学学报,2001,23(4):50-53.

[6]徐晖,张必成,王升富.微分脉冲阴极溶出伏安法测定环境水样中的痕量硒[J].环境化学,2001,20(4):386-391.

[7]Elleouei C,Queniel F,Madec C.Determination of inorganic and organic selenium species in natural by cathodic stripping voltammetry[J].water Research,1996,30(4):909-914.

[8]Ochsenkuhn-Perropoulou M,Tsopelas F.Speciation analysis of selenium suing voltammetric techniques[J].Anal Chim Acta,2002,467(1/2):167-178.

[9]Recai I,Guler S.Determination of selenium in garlic by cathodic stripping voltammetry[J].Food Chemistry,1999,66:381-385.

[10]Recai I,Guler S.A direct method for the determination of selenium and lead in cow's milk by differential pulse stripping voltammetry[J].Food Chemistry,2000:345-350.

[11]Anca-Iulia S,Gobriela-Raluca B,Emilia-Elena L,et al.Differential pulse cathodic stripping voltammetric determination of selenium in pharmacentical products[J].Journal of Phormacentical and Biomedical of Analysis,2002,30(4):1425-1429.

[12]Zvonimir S,Jaroslava S G,Nikala M,et al.Development of a Chronopotentionetric stripping method for the determination of selenium(Ⅳ) in mixed diets[J].Food Chemistry,2005,92:771-776.

[13]张晓丽,王丽增,马成松,等.痕量硒的伏安法测定[J].山东大学学报,1995,30(2):186-189.

[14]Suznjevic D,Blagojevic S.Determination of selenium CSV suing copper microelectrode[J].Microchem J,1997,57:255-260.

[15]藏树良,王歆睿,铁梅,等.阴极溶出伏安法测定痕量硒[J].辽宁大学学报:自然科学版,2005,32(4):289-292.

[16]Monica P,Luigi F,Patrizia M,et al.Determination of selenium in Italian rices by differential pulse cathodic stripping voltammetry[J].Food Chemistry,2007,105:1091-1098.

[17]Britta L,Constant M G,Van D B.Detemination of selemium by catalytic cathodic stripping voltammetry[J].Anal Chim Acta,2000,418:33-42.

[18]Robert P,Wlodystaw W K.Determination of trace selenium on hanging copper amalgam drop electrode[J].Electrochimica Acta,2007,53:584-589.

[19]李发生,王素芳.玻碳金膜电极线性扫描微分阳极溶出伏安法分析测定水中痕量Se(Ⅳ)和Se(Ⅲ)[J].中国环境监测,1994,10(2):44-48.

[20]孙长林,王建燕,李学斌,等.硒的汞膜电极示差脉冲吸附伏安法[J].分析化学,1991,19(2):139-142.

[21]Tanaka S H,Sugawara K,Taga M.Voltammetry of selenium based on an adsorptive accumulation of selenium-2,3-diamino naphthalene[J].Anal Sci,1990(6):475-480.

[22]Ashournia M.Determination of Se(Ⅳ) in natural by adsorptive stripping voltammetry of 5-nitropiazselenol[J].Journal of Hazardous Materials,2010,174:788-794.

[23]蔡乾涛,王永丽,陆晓华.吸附溶出伏安法测定微量硒-铜离子对二溴代苤硒脑体系增敏作用[J].分析化学,1991,19(1):27-31.

[24]Zhang Qing,Li Xiang Jun,Shi Hui,et al.Determination of trace selenium by differential pulse adsorptive stripping voltammetry at a bismuth film electrode[J].Electrochimica Acta,2010,55:4717-4721.

[25]Wang J,Lu J.Uitratrace measurements of selenium by cathodic stripping voltammetry[J].Anal Chim Acta,1993,274:219-224.

[26]Muhamed R,Wel L.Analysis of selenium species using cathodic stripping voltammetry[J].J Technol,2006,44:55-66.

[27]Fommaso F,Silvia R,Puola S.Simultaneous determination of the speciation of selenium and tellurium ingeological matrices by use of on iron(III)-modified chelating resin and cathodic stripping voltammetry[J].Anal Chim Acta,1998,361:113-123.

[28]Korolczuk M,crabarczyk M.Determination of Se(Ⅳ) in on-line system by cathodic stripping voltammetry[J].Electroanalysis,2003,15:821-826.

[29]Van C M G,Berg D,Khan S H.Determination of selemium in sea water by cathodic stripping voltammetry[J].Anal Chim Acta,1990,231:221-229.

[30]Lenge B.Determination of trace selenium by cathodic stripping voltammetry[J].Anal Chim Acta,2000,418:33-37.

[31]Papoff T,Boeci F,Lanca N F.Speciation of selenium in natural water and snow by DPCSV at the hanging mercury Drop electrode[J].Microchem J,1998,59:50-76.

[32]Recai I,Giiler S,Banu K.Determination of cadmium,Lead and selenium in medicago sativa herb by differential pulse stripping voltammetry[J].Anal sci,1999,15(5):493-495.

[33]Hasan A Y,Din G S.Stripping voltammetry of selenium(Ⅳ) in the presense of copper ion[J].Anal Sci,1989(5):89-92.

[34]Lu Guang Han,Wang Ling Yan,Song Feng,et al.Determination of uric acid and Norepinephrine by chitosan-multiwall carbon nanotube modified Electrode[J].Electroanalysis,2005,17(10):901-905.

[35]Lu Guang Han,Yao Xin,Wu Xiao Gang,et al.Determination of the total iron by chitosan-modified glassy carbon electrode[J].Microchem J,2001,69:81-87.

[36]Lu Guang Han,Yao Xin,Zhou Xiang Chun,et al.Determination of trace thiocyanate by a chitosan-modifed glassy carbon electrode[J]. Chem J Chinese University,2002,18(3):316-320.

[37]Ashournia M,Aliakbar.Determination of selenium in natural water by adsorptive differential pulse cathodic stripping votammetry[J].Journal of Hazardous Materials,2009,168:542-547.

[38]Inam R,Somer C.Adsorptive stripping voltammetry of selenium(Ⅳ) in the thiocyanate suing ascorbic acid as the reductant[J].Anal Sci,1997,13:653-656.

[39]Stara V,Kapanica M.Cathodic stripping voltammetry and adsorptive stripping voltammetry of selenium [J].Anal Chim Acta,1988:231-236.

[40]Long J,Nagaosa Y.Determintion of selenium(Ⅳ) by catalytic stripping voltammetry with an in situ plated bimuth-film electrode[J].Anal Sci,2007,23:1343-1346.

[41]Long J J,Nagaosa Y.Cathodic stripping voltammetry determination of As(III) with in situ plated bismuth-film electrode using the catalytic bydrogen wave[J].Anal Chim Acta,2007,593:1-6.

[42]Bertolino F A,Jtorriero A A,Salinas R O R.et al.Speciation analysis of Se(Ⅳ) in natural water using square-wave voltammetry after preconcentration on activated carbon[J].Anal Chim Acta,2006,572:32-38.

[43]王胜天,许宏鼎,李景虹.环境电分析化学[J].分析化学,2002,30(8):1005-1011.

[44]Claudete F P,Gonzage F B,Santos A M G,et al.Determination of selenium by anodic stripping voltammetry using gold electrode made from recordable CDs[J].Talanta,2006,69(4):877-881.

猜你喜欢

痕量伏安法测定
用伏安法测电阻
铌-锆基体中痕量钐、铕、钆、镝的连续离心分离技术
ICP-OES法测定钢和铁中微量元素
HPLC法测定桂皮中的cinnamtannin D-1和cinnamtannin B-1
UPLC法测定萹蓄中3种成分
非线性伏安曲线问题解析
HPLC法测定炎热清片中4种成分
通过伏安特性理解半导体器件的开关特性
痕量氢气连续观测仪稳定性分析
ICP- MS 测定西藏土壤中痕量重金属Cu、Pb、Zn、Cr、Co、Ni、Cd