一类分数阶奇异微分方程边值问题正解的存在性
2011-03-31张金陵张福珍
张金陵,张福珍
(1.中国矿业大学理学院,江苏徐州 221008;2.徐州高等师范学校数理系,江苏徐州 221116;3.九州职业技术学院高等数学教研室,江苏徐州 221116)
一类分数阶奇异微分方程边值问题正解的存在性
张金陵1,2,张福珍1,3
(1.中国矿业大学理学院,江苏徐州 221008;2.徐州高等师范学校数理系,江苏徐州 221116;3.九州职业技术学院高等数学教研室,江苏徐州 221116)
利用Leray-Schauder型非线性抉择和Krasnoselskii锥压缩拉伸不动点定理,给出了一类非线性分数阶奇异微分方程边值问题正解的存在性的充分条件.
非线性抉择;不动点定理;奇异微分方程;正解
0 引言
分数算子在各个学科领域中得到了广泛的应用,如物理、机械、化学、工程等.值得注意的是,分数阶微分方程的理论研究刚起步,分数阶微分方程边值问题作为分数阶微分方程理论研究的重要分支之一,近年来得到了研究者们的重视,也获得了不少研究成果,如文献[1-15],本文受文献[16]启发,研究分数阶奇异边值问题.
1 预备知识
定义1.1[2]函数y:(0,+∞)→R的α阶Riemann-Liouville分数阶积分为
其中α>0,Γ(⋅)为gamma函数.
定义1.2[2]连续函数y:(0,+∞)→R的α阶Riemann-Liouville分数阶导数为
其中α>0,Γ(⋅)为gamma函数,n=[α]+1.
引理1.1[2]若α>0,u∈C(0,1)⋂L1(0,1),则存在分数阶微分方程
引理1.6[17](Leray-Schauder非线性抉择)假设Ω是Banach空间U上凸集K的一个相对子集.令F→K是紧的且0∈Ω,则
(2)存在一个点u∈∂Ω和λ∈(0,1),使得u=λTu.
2 主要结果
[1]Agarwal R P,Lakshmikantham V,Nieto J J.On the concept of solution for fractional differential equations with uncertainty[J].Nonlinear Anal,2010,72:2859-2862.
[2]Bai Z.On positive solutions of a nonlocal fractional boundary value problem[J].Nonlinear Anal,2010,72:916-924.
[3]Ahmad B.Existence results for multi-point nonlinear boundary value problems of fractional differential equations[J].Mem Differ Equ Math Phys,2010,49:83-94.
[4]Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential Equations[M].Amsterdam:Elsevier, 2006.
[5]Kosmatov N.A multi-point boundary value problem with two critical conditions[J].Nonlinear Anal,2006,65:622-633.
[6]Lakshmikantham V,Leela S.Nagumo--type uniqueness result for fractional differential equations[J].Nonlinear Anal,2009,71: 2886-2889.
[7]Lakshmikantham V,Leela S.A Krasnoselskii-Krein-type uniqueness result for fractional differential equations[J].Nonlinear Anal,2009,71:3421-3424.
[8]Lakshmikantham V,Vatsala A S.Theory of fractional differential inequalities and applications[J].Commun Appl Anal,2007,11: 395-402.
[9]Lakshmikantham V,Vatsala A S.Basic theory of fractional differential equations[J].Nonlinear Anal,2008,69:2677-2682.
[10]Bai Z.On Positive Solutions of a Nonlocal Fractional Boundary Value Problem[J].Nonlinear Anal,2010,72:916-924.
[11]Zhang Y,Bai Z.Existence of positive solutions for s nonlinear fractional three-point boundary value problems at resonance[J].Appl Math Comput,2011,36:417-440.
[12]PODLUBN Y I.Fractional Differential Equations,Mathematics in Science and Engineering[M].New York:Academic Press,1999.
[13]Bai Z,Lu H.Positive solutions for boundary value problem of nonlinear fractional differential equation[J].J Math Anal Appl,2005,311:495-505.
[14]Bai Z,Zhang Y.The existence of solutions for a fractional multi-point boundary value problem[J].J Appl Math Comput,2010, 60:2364-2372.
[15]Su X.Boundary value problem for a coupled system of nonlinear fractional differential equations[J].Appl Math Lett,2009,22: 64-69.
[16]Bai Z,Qiu T.Existence of positive solution for singular fractional differential equation[J].Appl Math Lett,2009,215:2761-2767. [17]马如云.非线性微分方程非局部问题[M].北京:科学出版社,2004.
Problem for Fractional Differential Equation
ZHANG Jin-ling1,2,ZHANG Fu-zhen1,3
(1.College of Science,China University of Mining and Technology,Xuzhou 221008,China; 2.Department of Math and Physics,Xuzhou Normal School,Xuzhou 221116,China; 3.Advanced Math Teaching and Research Office,Jiuzhou College of Vocational&Technology,Xuzhou 221116,China)
This paper discussed the existence of positive solution for a singular boundary value problem for frac⁃tional differential equation by using nonlinear alternative of Leray–Schauder type and Krasnoselskii’s fixed point theorem in a cone.
nonlinear alternative;fixed point theorem;singular boundary value problem;positive solution
O175.8
A
1008-2794(2011)08-0015-07
2011-5-19
张金陵(1974—),女,江苏徐州人,徐州高等师范学校数理系讲师,研究方向:微分方程.