APP下载

钢管混凝土柱抗火分析方法及防火措施

2010-01-08郑永乾周继忠蔡雪峰

海峡科学 2010年10期
关键词:温度场钢管高温

郑永乾 周继忠 蔡雪峰,2

钢管混凝土柱抗火分析方法及防火措施

郑永乾1周继忠1蔡雪峰1,2

1.福建工程学院土木工程系 2. 福州大学土木工程学院

钢管混凝土柱耐火性能和防火措施已受到了人们的关注,以往的研究中大多先求出温度场,然后根据温度结果进行火灾下受力性能的计算分析。温度场的分析可采用自编有限元程序和通用有限元软件,结构受力性能分析可采用纤维模型法、分段积分法和有限元方法。该文简要介绍了上述方法及其特点,并对钢管混凝土柱的防火措施进行了探讨。

钢管混凝土 柱 抗火分析 防火措施

钢管混凝土柱在工程中的应用日益广泛,其耐火性能和防火措施问题受到了人们的关注。在火灾作用下,钢管混凝土柱构件截面会形成不均匀的温度场,同时材料性能在高温下会不断恶化,其温度效应和结构效应是同时存在的。因此热力耦合分析是比较接近实际的方法,但是处理难度较大。在一般情况下,结构构件的温度分布主要受到外界火焰温度、材料热工性能、构件形状和尺寸等的影响,而结构内力状态和变形等的影响非常小[1],因此可以先求出构件温度场,然后将温度场结果用于受力性能的计算,这在以往的理论研究中采用较多,例如韩林海[2]、Lie和Denham[3]、郑永乾[4]、王卫华[5]等。

纤维模型法、分段积分法和有限元法在常温下钢管混凝土构件的分析中已得到较为广泛的应用,通过考虑热工参数和力-热本构关系等,可以将上述方法用于高温分析中。作者通过在以往福州大学组合结构课题组中的学习研究以及现在的探索,对上述分析方法及其特点进行了介绍,并对钢管混凝土柱的防火措施进行了探讨,以期为有关理论研究和工程实践提供参考。

1 温度场分析方法

1.1 自编截面温度场有限元程序

钢管混凝土构件在四面受火时可近似地认为温度沿着构件长度方向不变化,因此可简化为沿截面的二维温度场问题。根据孔祥谦[6]描述的方法编制了分析钢管混凝土构件在高温下截面温度场的非线性有限元程序。材料热工参数暂取用Lie和Denham[3]建议的钢材和混凝土热工参数表达式,并考虑了混凝土中水分的影响,对混凝土热工参数进行了修正[7]。在受火面同时存在着对流和辐射两种换热,采用第三类边界条件求解,对流传热系数取25W/m2×K;综合辐射系数取0.5[8]。计算时暂不考虑钢材与混凝土之间的接触热阻,假设完全传热,截面划分采用三角形单元。采用上述方法编制了计算火灾下构件截面温度场的MATLAB程序,该程序适用性强,计算速度快,改变截面等重要参数亦能迅速得到温度结果,程序计算结果可在后文纤维模型法和分段积分法计算耐火极限中采用。

1.2 有限元软件ABAQUS分析

图1 温度-时间关系计算结果与实验结果对比

采用有限元软件ABAQUS在进行结构分析时必须调节各节点温度,因此建立的三维温度场分析模型和结构分析模型一致。混凝土和刚性垫块采用八节点三维实体单元DCC3D8D,钢管采用四节点壳单元DS4。钢管内壁与混凝土采用束缚(Tie)约束。

为验证程序的正确性,本文对方钢管混凝土柱截面温度实验曲线[9]进行计算,如图1所示,可见,采用MATLAB和ABAQUS的计算结果与实验结果吻合良好。其中,构件截面尺寸为×s=203×6.35mm,为方钢管外边长,s为钢管壁厚,为测点距钢管面的距离。实验按照加拿大设计规程CAN4-S101规定的升温曲线进行。

2 火灾下受力性能分析方法

2.1 纤维模型法

图2 截面单元划分

钢材在温度和应力共同作用下的总应变(s)由三部分组成,即应力作用产生的应变(ss)、自由膨胀应变(sth)和高温瞬时蠕变(scr)。混凝土在温度和应力共同作用下的总应变(c)由四部分组成[7],即应力作用产生的应变(cs)、自由膨胀应变(cth)、高温徐变(ccr)和瞬态热应变(tr)。钢材和混凝土的自由膨胀应变、高温下钢材的应力-应变关系均采用Lie和Denham[3]给出的表达式,高温下受压区混凝土的应力-应变关系采用韩林海[2]提供的约束混凝土模型,受拉区混凝土采用Rots等[10]提出的模型,具体表达式参考Cai等[11]。

计算时采用如下基本假设:(1)构件在变形过程中始终保持为平截面;(2)钢材和混凝土之间无相对滑移;(3)忽略剪力对构件变形的影响;(4)构件两端为铰接,挠曲线为正弦半波曲线。由于对称性,取一半截面计算,单元划分如图2所示。

根据截面上任一点的应变i,可确定对应的钢管应力si和混凝土应力ci,则可得截面内弯矩in和内轴力in为

其中,si和ci分别为钢管单元面积和混凝土单元面积,i为计算单元形心坐标。

火灾下,具有初始缺陷o和荷载偏心距o钢管混凝土柱的荷载-变形关系及耐火极限的计算步骤如下:①计算截面参数,进行截面单元划分,确定钢管混凝土横截面的温度场分布;②给定中截面挠度m,计算中截面曲率,并假设截面形心处应变o;③计算单元形心处的应变i,计算钢管应力si和混凝土应力ci;④计算内弯矩in和内轴力in;⑤判断是否满足in/in=o+o+m的条件,如果不满足,则调整截面形心处的应变o并重复步骤③~④,直至满足;⑥判断是否满足作用在构件上荷载=max()的条件,max()为时刻温度场情况下,钢管混凝土柱荷载-变形关系曲线上峰值点对应的轴力,如果不满足,则给定下一时刻的截面温度场,并重复步骤③~⑤,直至满足,则此时刻即为构件的耐火极限。

采用纤维模型法对火灾下钢管混凝土构件的荷载-变形关系和耐火极限进行计算,概念明确,计算方便,但是纤维模型法是一种简化的数值分析方法,在进行力学性能分析时,不能准确分析高温作用下钢与混凝土的应力状态、应变发展和相互作用等,同时,采用纤维模型法时难以获得构件在整个受火过程中的变形,而且计算时只能取计算长度。

2.2 分段积分法

高温下材料应力-应变关系与纤维模型法相同,钢材的高温蠕变较为明显,可采用AIJ[12]给出的表达式及系数。混凝土瞬态热应变数值较大,在高温分析中应合理考虑,本文选取Anderberg和Thelandersson提出的模型[13]。对于混凝土的高温徐变,可选择应用较多的Anderberg和Thelandersson模型[13]。

分析时采用的基本假设去掉纤维模型法基本假设中的(4),其余相同。为了反映材料在构件长度和截面两个方向上性能的变化,在对钢管混凝土柱进行单元划分时,考虑两个层次的划分。在构件长度方向上划分若干个梁-柱单元,将构件视为通过结点相连的梁-柱单元的集合。截面采用切线刚度法,类似于纤维模型法中的直接迭代法。将截面分割为若干微单元,确定微单元形心的几何特性和相应的材料切线模量,然后利用合成法求得的材料切线模量和相应的单元几何特性确定各个单元的贡献,最后将各单元的贡献叠加,从而获得截面切线刚度距阵。由于对称性取半个截面进行计算。钢管混凝土构件截面单元划分与纤维模型法截面划分一致,沿长度方向单元划分如图3所示,其中为作用在构件上的荷载,为荷载偏心距。

图3 长度方向单元划分

本文采用近似的UL表述(即AUL表述),利用虚功原理可得AUL表述的局部坐标系下非线性梁-柱单元增量平衡方程为[14]:

参考Jetteur等[14]可得局部坐标系下改进的AUL表述的单元增量平衡方程为:

在进行程序编制中,采用了两个级别的积分策略。在截面上采用合成法,即在截面上划分足够数目的微单元,将每个单元的贡献采用直接迭加的办法来实现积分的运算;在长度上采用六点Gauss积分法。温度流动路径可参考过镇海和时旭东[1]推导确定。

采用分段积分法能够获得受火全过程的变形曲线及其耐火极限,能够考虑钢材高温蠕变、混凝土瞬态热应变和高温徐变,能够直接利用杆长和边界条件计算。与纤维模型法一样,分段积分法也难以准确分析高温下钢与混凝土相互作用等受力特性。

2.3 有限元软件ABAQUS

以往不少学者已采用有限元软件ABAQUS对钢管混凝土柱在常温下的受力性能进行了系统的分析[2],但对于高温下的ABAQUS分析比较少,王卫华[5]对圆钢管混凝土柱的耐火性能进行计算分析,计算结果与实验结果比较总体偏于安全,计算时未考虑钢材高温蠕变和混凝土瞬态热应变。

有限元模型中,钢材采用ABAQUS软件中提供的等向弹塑性模型,满足Von Mises屈服准则。高温下钢管的应力-应变关系、蠕变表达式同分段积分法。混凝土采用ABAQUS软件中提供的塑性损伤模型,模型中基本参数取值根据HKS[15]确定。高温下受压区混凝土的应力-应变关系采用韩林海[2]ABAQUS分析的常温表达式,并参考韩林海[2]的高温模型进行了修正。受拉区混凝土模型、瞬态热应变关系同分段积分法,参考Li和Purkiss[13]将混凝土瞬态热应变考虑到应力-总应变关系曲线中。需要说明的是,采用塑性损伤模型较难考虑混凝土高温徐变,ABAQUS分析中暂不考虑其影响。

以Lie和Chabot[16]中构件C21为例,截面尺寸×s=273.1×5.56mm,钢材屈服强度350MPa,混凝土圆柱体强度29MPa,硅质骨料,构件两端固结,作用在构件上的荷载525kN。图4所示为1/4构件的有限元分析模型,其中,钢管采用四节点减缩积分格式的壳单元S4R,混凝土采用八节点减缩积分格式的三维实体单元C3D8R。端部设置刚性很大的垫块施加轴向荷载,垫块采用三维实体单元C3D8R模拟。刚性垫块与钢管采用Shell to Solid Coupling进行约束,与混凝土之间采用法向硬接触约束。根据构件实际受力情况,设置两个分析步骤,首先在构件加载位置施加荷载,保持外荷载不变,调用温度场分析结果计算。初始弯曲取1/1000杆长。

图4 有限元模型

利用上述方法,可以得到该钢管混凝土柱的计算轴线变形(D)-受火时间()关系曲线,如图5所示,其中向上轴向变形为正,构件压缩为负。可见,计算结果与实验结果总体趋势接近,计算的耐火极限偏于安全。在轴压比不大的情况下,升温初期,由于钢管温度较高,热膨胀也比核心混凝土大的多,构件膨胀大于外荷载引起的轴向压缩,变形曲线上升,荷载主要由钢管承担,随着钢管温度的提高,钢材强度和弹性模量将大大退化,轴向变形曲线下降。当变形值下降到一定程度,核心混凝土继续承受外荷载,随着高温下混凝土材料属性的降低,轴向变形曲线逐渐下降直至构件破坏[17]。在轴压比较大的情况下,前期上升的轴向变形则不明显或不出现。

图5 轴线变形-时间关系曲线

图6给出构件的破坏形态以及最终的应力状态,其中变形放大了10倍。可见,构件跨中有较大的弯曲变形,左侧与右上受火部位的钢管与混凝土之间明显脱开。跨中左侧钢管温度达到931℃,Mises应力19.44MPa。端部未受火,承受较大外荷载,Mises应力最大为52.33MPa。混凝土纵向压应力最大为14.69MPa,在顶部,对于跨中和离顶部约1/6杆长位置,混凝土纵向应力也较大,约达到13.85MPa。

图6 破坏时形态及应力分布

图7所示为不同时间下构件跨中截面混凝土纵向应力的分布情况,为便于分析,在图5中定出A~E点。可见,在常温加载后,即0min时,跨中截面混凝土应力基本呈现带状分布,混凝土全截面受压,由于初始弯曲,在外荷载作用下一侧压应力较高,如图7(a)所示。升温初期,荷载主要由外部钢管承担,截面混凝土温度外高内低,高温区的热膨胀变形受到低温区的约束,因此高温区混凝土为压应力,内部低温区混凝土为拉应力,截面应力分布云图与温度分布类似,如图7(b)所示。随着截面内外温差的减小,外围混凝土压应力和内部拉应力有所减小,在C点位置,核心混凝土又开始承受外荷载,如图7(c)所示。混凝土在温度和外荷载作用下,压应力增加,在D点位置,混凝土中心点压应力6.96MPa,右边缘点压应力6.07MPa,如图7(d)所示。随着混凝土温度的进一步升高,材料属性恶化较为严重,跨中挠度增加较快,破坏时压应力最大区域在截面中心偏下,即偏向构件弯曲内侧,压应力为13.85MPa,此时整个截面混凝土为受压状态,如图7(e)所示。

图7 不同时间下跨中截面混凝土纵向应力

采用ABAQUS软件结果后处理形象直观,能够进行火灾全过程的应力、应变、相互作用等受力特性分析。采用ABAQUS的建模、参数分析及计算的速度不如前面两种,目前ABAQUS研究钢管混凝土耐火性能尚不完善,例如适合于ABAQUS分析的混凝土高温本构模型、混凝土高温徐变、接触热阻取值、高温下钢与混凝土的粘结滑移等还需要进一步研究。

3 防火措施

(1)根据韩林海[2]的研究结果,火灾荷载比、截面尺寸、长细比和防火保护层厚度是影响钢管混凝土柱耐火极限的主要因素。因此,为提高耐火极限,可在设计中降低荷载比、增大截面尺寸、改变长细比或采取防火保护措施。在钢管混凝土外部采用防火保护是非常有效的方法,在不少工程中应用,例如深圳赛格广场大厦、杭州瑞丰国际商务大厦、武汉国际证券大厦等[2]。防火保护可采用厚涂型钢结构防火涂料、金属网抹水泥砂浆、外包混凝土和采用防火板。

厚涂型钢结构防火涂料效果明显,在工程中应用较多。喷涂前,首先应将钢管表面处理干净,然后打底,底层材料由干料(图8(a))、专用胶黏剂和水按一定比例搅拌均匀,如图8(b)所示。接着利用空压机(图8(c))和喷枪在钢管表面打底,一次搅拌的混合料宜在2小时内用完,图8(d)所示为打底后的情况。待底层材料完全凝固硬化后可开始采用手工涂抹。取袋装干料和水按一定比例搅拌均匀,在钢管表面分层涂抹,如图8(e)和(f)所示。

(2)配钢筋。以往已有一些学者对钢管配筋混凝土柱的耐火性能进行研究,取得了部分研究成果[2]。本文作者采用分段积分法计算了火灾下钢管配筋混凝土柱的变形和耐火极限,结果表明,对于专门考虑抗火作用钢筋的构件,配筋率1~5%可比钢管素混凝土柱耐火极限提高约10%~60%,配筋率每增加1%约增加11%。随着钢筋屈服强度的增加,构件的耐火极限稍有增加。对于火灾荷载比包含钢筋受力作用的构件,配筋率和钢筋屈服强度对耐火极限的影响很小,该内容将另文发表。

(3)为保证火灾时核心混凝土中水蒸气能够及时散发,确保结构安全工作,需在钢管混凝土柱上设置排气孔,直径一般为20mm[2]。

图8 防火涂料施工

4 结语

4.1采用自编有限元程序和有限元软件ABAQUS计算钢管混凝土柱在火灾下的温度场,均可以取得较好的结果,同时为火灾下构件受力性能的计算分析提供基础。

4.2纤维模型法、分段积分法和有限元法是火灾下钢管混凝土柱受力性能分析的常用方法。纤维模型法概念明确,计算方便,但它是一种简化的数值分析方法,难以准确考虑钢材的高温蠕变、混凝土的瞬态热应变和高温徐变。分段积分法将构件沿着长度方向分为若干单元,将数值积分点处的截面分为若干面积单元,在单元分析中采用改进的AUL 表述推导得到梁柱单元刚度矩阵方程,程序中可合理考虑钢材高温蠕变、混凝土瞬态热应变和高温徐变。采用纤维模型法和分段积分法均难以准确分析高温作用下钢与混凝土的应力状态、应变发展和相互作用等受力特性,采用有限元法可以很好地解决这些问题,但是有限元方法建模和计算速度较慢,适合有限元软件分析的材料高温本构、参数取值等研究尚不完善。

4.3为提高钢管混凝土柱的耐火极限,可在采用厚涂型钢结构防火涂料、金属网抹水泥砂浆、外包混凝土、防火板或配置专门考虑防火的钢筋,其中在钢管混凝土表面涂抹防火涂料是非常有效的保护措施。

随着科学技术的发展,新型钢管混凝土结构逐渐得到人们的重视,例如带肋薄壁钢管混凝土、中空夹层钢管混凝土、钢管高性能混凝土等,他们的耐火性能及其抗火设计、施工等问题还需要进一步探讨。

[1] 过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003.

[2] 韩林海.钢管混凝土结构-理论与实践(第二版)[M].北京:科学出版社,2007.

[3] Lie T T,Denham E M A. Factors Affecting the Fire Resistance of Square Hollow Steel Columns Filled With Bar-Reinforced Concrete [R].Internal Report, No.650, Ottawa, Canada: National Research Council Canada,1993.

[4] 郑永乾.方钢管混凝土柱耐火极限的计算[C].中国钢结构协会钢-混凝土组合结构分会第十二次学术会议论文集,2009.10, 中国厦门,217-220.

[5] 王卫华.钢管混凝土柱-钢筋混凝土梁平面框架结构耐火性能研究[D].福州:福州大学博士学位论文,2009.

[6] 孔祥谦. 有限单元法在传热学中的应用(第三版)[M].北京:科学出版社,1998.

[7] Harmathy T Z. Fire safety design and concrete [M]. Harlow, Essex, England: Longman Scientific & Technical, 1993.

[8] ECCS-Technical Committee 3. Fire safety of steel structures, technical note, Calculation of the fire resistance of centrally loaded composite steel-concrete columns exposed to the standard fire [R], European Convention for Constructional Steelwork, Brussels, Belgium, 1988.

[9] Lie T T, Irwin R J. Fire Resistance of Rectangular Hollow Steel Sections Filled with Bar-Reinforced Concrete [R]. NRC-CNRC Internal Report, No.631, Ottawa, Canada, 1992.

[10] Rots J G, Kuster G M A, Blaauwendraad J. The need for fracture mechanics options in finite element models for concrete structures [C]. Proceedings of the International Conference on Computer Aided Analysis and Design of Concrete Structures, Split, 1984: 19-32.

[11] Cai J, Burgess I, Plank R. A generalised steel/reinforced concrete beam-column element model for fire conditions [J]. Engineering Structures, 2003, 25(6): 817-833.

[12] AIJ. Recommendations for design and construction of concrete filled steel tubular structures [S].Architectural Institute of Japan (AIJ), Tokyo, Japan: Architectural Institute of Japan, 1997.

[13] Li L Y, Purkiss J. Stress-strain constitutive equations of concrete material at elevated temperatures [J]. Fire Safety Journal, 2005, 40(7): 669-686.

[14] Jetteur P H, Cescotto S, de Ville de Goyet. Improved Nonlinear Finite Element for Oriented Bodies Using an Extension of Margurre’s Theory [J]. Computer & Structure, 1982, 1(17): 99-104.

[15] Hibbitt, Karlsson, Sorensen. ABAQUS Version 6.5: Theory manual, users' manual, verification manual and example problems manual [M]. Hibbitt, Karlsson and Sorensen Inc., 2005.

[16] Lie T T, Chabot M. Experimental studies on the fire resistance of hollow steel columns filled with plain concrete [R]. Internal Report, No.611, Ottawa, Canada: National Research Council Canada, 1992.

[17] Wang Y C. Steel and Composite Structures: Behaviour and Design for Fire Safety [M]. London: Spon Press, 2002

猜你喜欢

温度场钢管高温
高温干旱持续 农作物亟须“防护伞”
高温季蔬菜要如此培“根”固本
全球高温
微型钢管桩在基坑支护工程中的应用
浅探输变电钢管结构的连接方法
铝合金加筋板焊接温度场和残余应力数值模拟
基于纹影法的温度场分布测量方法
高温来袭,警惕寒湿作祟
MJS工法与冻结法结合加固区温度场研究
ACS6000中压传动系统在钢管轧制中的应用