APP下载

浅谈高层建筑结构设计

2009-09-30钟勇华

中国高新技术企业 2009年24期
关键词:高层建筑抗震结构设计

钟勇华

摘要:进入20世纪90年代以来,随着社会与经济的蓬勃发展,特别是随着城市建设的发展,高层建筑在城市中应运而生。城市中的高层建筑成为反映城市经济繁荣和社会进步的重要标志。文章从高层建筑的特点出发,对高层建筑结构体系设计的基本要求等方面进行了阐述分析。

关键词:高层建筑;结构设计;规则结构;载荷;抗震

中图分类号:TU973文献标识码:A文章编号:1009-2374(2009)24-0100-03

一、高层建筑的特点

1.在相同的建设场地中,建造高层建筑可以获得更多的建筑面积,这样可以部分解决城市用地紧张和地价高涨的问题。设计精美的高层建筑还可以为城市增加景观,如马来西亚首都的石油大厦和上海的金茂大厦等。但高层建筑太多、太密集也会对城市带来热岛效应,玻璃幕墙过多的高层建筑群还可能造成光污染现象。

2.在建筑面积与建设场地面积相同比值的情况下,建造高层建筑比多层建筑能够提供更多的空闲地面,将这些空闲地面用作绿化和休息场地,有利于美化环境,并带来更充足的日照、采光和通风效果。例如在新加坡的新建居住区中,由于建造了高层建筑群,留下了更多地面空间,可以更好地建设城市绿化和人们休闲活动空间。

3.高层建筑中的竖向交通一般由电梯来完成,这样就会增加建筑物的造价,从建筑防火的角度看,高层筑的防火要求要高于中低层建筑,也会增加高层建筑的工程造价和运行成本。

二、高层建筑结构体系的特点

随着层数和高度的增加,水平作用对高层建筑结构安全的控制作用更加显著,包括地震作用和风荷载。高层建筑的承载能力、抗侧刚度、抗震性能、材料用量和造价高低,与其所采用的结构体系密切相关。不同的结构体系,适用于不同的层数、高度和功能。

1.框架结构体系。框架结构体系一般用于钢结构和钢筋混凝土结构中,由梁和柱通过节点构成承载结构,框架形成可灵活布置的建筑空间,具有较大的室内空间,使用较方便。由于框架梁柱截面较小,抗震性能较差,刚度较低,建筑高度受到限制;剪切型变形,即层间侧移随着层数的增加而减小;框架结构主要用于不考虑抗震设防、层数较少的高层建筑中。在考虑抗震设防要求的建筑中,应用不多;高度一般控制在70m以下。

2.剪力墙结构体系。利用建筑物墙体作为承受竖向荷载、抵抗水平荷载的结构,称为剪力墙结构体系。剪力墙结构体系于钢筋混凝土结构中,由墙体承受全部水平作用和竖向荷载。

现浇钢筋混凝土剪力墙结构的整体性好,刚度大,在水平荷载作用下侧向变形小,承载力要求也容易满足;剪力墙结构体系主要缺点:主要是剪力墙间距不能太大,平面布置不灵活,不能满足公共建筑的使用要求。此外,结构自重往往也较大。

当剪力墙的高宽比较大时,是一个受弯为主的悬臂墙,侧向变形是弯曲型,即层间侧移随着层数的增加而增大。剪力墙结构在住宅及旅馆建筑中得到广泛应用。因此这种剪力墙结构适合于建造较高的高层建筑。

根据施工方法的不同,可以分为:全部现浇的剪力墙;全部用预制墙板装配而成的剪力墙;内墙现浇、外墙为预制装配的剪力墙。

在承受水平力作用时,剪力墙相当于一根下部嵌固的悬臂深梁。剪力墙的水平位移由弯曲变形和剪切变形两部分组成。高层建筑剪力墙结构,以弯曲变形为主,其位移曲线呈弯曲形,特点是结构层间位移随楼层增高而增加。

3.框架—剪力墙结构(框架—筒体结构)体系。在框架结构中设置部分剪力墙,使框架和剪力墙两者结合起来;取长补短;共同抵抗水平荷载,就组成了框架—剪力墙结构体系。如果把剪力墙布置成筒体,又可称为框架—筒体结构体系。

框架—剪力墙(筒体)结构比框架结构的刚度和承载能力都大大提高了,在地震作用下层间变形减小,因而也就减小了非结构构件(隔墙及外墙)的损坏,这样无论在非地震区还是地震区,这种结构型式都可用来建造较高的高层建筑,目前在我国得到广泛的应用。

4.筒体结构。单个筒体可分为实腹筒、框筒和桁筒。平面剪力墙组成空间薄壁筒体,即为实腹筒;框架通过减小肢距,形成空间密柱框筒,即框筒;筒壁若用空间桁架组成,则形成桁筒。实际结构中除烟囱等构筑物外不可能存在单筒结构,而常常以框架—筒体结构、筒中筒结构、多筒体结构和成束筒结构形式出现。

5.巨型结构。巨型结构一般由两级结构组成。第一级结构超越楼层划分,形成跨若干楼层的巨梁、巨柱(超级框架)或巨型衍架杆件(超级衍架),以这巨型结构来承受水平力和竖向荷载,楼面作为第二级结构,只承受竖向荷载并将荷载所产生的内力传递到第一级结构上。常见的巨型结构有巨型框架结构和巨型桁架结构。

不同的结构体系所具有的强度和刚度是不一样的,因而它们适合应用的高度也不同。一般说来,框架结构适用于高度低,层数少,设防烈度低的情况;框架—剪力墙结构和剪力墙结构可以满足大多数建筑物的高度要求;在层数很多或设防烈度要求很高时,可用筒体结构。

三、高层建筑结构设计的基本要求

1.结构的规则性。(1)不应采用严重不规则的结构体系。建筑设计应符合抗震概念设计的要求,不应采用严重不规则的设计方案。高层建筑不应采用严重不规则的结构体系,应符合下列要求:1)应具有必要的承载能力、刚度和变形能力;2)应避免因部分结构或构件的破坏而导致整个结构丧失承受重力荷载、风荷载和地震作用的能力;3)对可能出现的薄弱部位,应采取有效措施予以加强。(2)高层建筑的结构体系尚宜符合下列要求:1)结构的竖向和水平布置宜具有合理的刚度和承载力分布,避免因局部突变和扭转效应而形成薄弱部位;2)宜具有多道抗震防线。

2.规则结构的主要特征。建筑及其抗侧力结构的平面布置宜规则、对称,并应具有良好的整体性;建筑的立面和竖向剖面宜规则,结构的侧向刚度宜均匀变化,竖向抗侧力构件的截面尺寸和材料强度宜自下而上逐渐减小,避免抗侧力结构的侧向刚度和承载力突变。

规则结构一般指:体型(平面和立面)规则,结构平面布置均匀、对称并具有较好的抗扭刚度;结构竖向布置均匀,结构的刚度、承载力和质量分布均匀,无突变。

3.规则平面布置需满足的要求。结构平面布置必须考虑有利于抵抗水平和竖向荷载,受力明确,传力直接,力争均匀对称,减少扭转的影响。在地震作用下,建筑平面要力求简单规则,风力作用下则可适当放宽。抗震设防的高层建筑,平面形状宜简单、对称、规则,以减少震害。

在高层建筑的一个独立结构单元内,宜使结构平面形状简单、规则,刚度和承载力分布均匀。不应采用严重不规则的平面布置。

抗震设计的B级高度钢筋混凝土高层建筑、混合结构高层建筑,其平面布置应简单、规则,减少偏心。

四、高层建筑结构设计

在高层建筑中,竖向荷载对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比;另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。对一些较柔的高层建筑,风荷载是结构设计的控制因素,随着建筑物高度的增高,风荷载的影响越来越大。高层建筑中除了地震作用的水平力以外,主要的侧向荷载是风荷载,在荷载组合时往往起控制作用。因此,高层建筑在风荷载作用下的结构分析与设计引起了研究人员和工程师们的重视。

1.竖向荷载设计应减轻自重。高层建筑减轻自重比多层建筑更有意义。从地基承载力或桩基承载力考虑,如果在同样地基或桩基的情况下,减轻房屋自重意昧着不增加基础造价和处理措施,可以多建层数,这在软弱土层有突出的经济效益。

地震效应与建筑的重量成正比,减轻房屋自重是提高结构抗震能力的有效办法。高层建筑重量大了,不仅作用于结构上的地震剪力大,还由于重心高地震作用倾覆力矩大,对竖向构件产生很大的附加轴力,从而造成附加弯矩更大。

2.风荷载计算。在已有研究的基础上,《荷载规范》指出,垂直于建筑物表面上的风荷载应按下式计算:

?棕k = ?茁z ?滋z ?滋s ?棕0 (1)

式中:?棕k:风荷载标准值(kN/m);?棕0:基本风压(kN/m);?滋s:风荷载体型系数;?滋z:风压高度系数;?茁z:z高度处的风振系数。

(1)基本风压值?棕0。基本风压值?棕0系以当地比较空旷平坦地面上离地10m高统计所得的50年一遇10min平均最大风速v0为标准,按?棕0=1/2pv确定的风压值。它应根据《荷载规范》中附表D.4采用,但不得小于0.3kN/m2。对一般的高层建筑,用《荷载规范》中所给的?棕0乘以1.1后采用;对于特别重要或对风荷载比较敏感的高层建筑,其基本风压值应按100年重现期的风压值采用。

(2)风荷载体型系数?滋s。确定风荷载体型系数?滋s是一个比较复杂的问题,它不但与建筑的平面外形、高宽比、风向与受风墙面所成的角度有关,而且还与建筑物的立面处理、周围建筑物密集程度及其高低等有关。当风流经建筑物时,对建筑物不同部位会产生不同的效果,即产生压力和吸力。空气流动产生的涡流,对建筑物局部则会产生较大的压力或吸力。1)整个迎风面上均受压力,其值中部最大,向两侧逐渐减小。沿高度方向风压的变化很小,风压分布近似于矩形;2)整个背风面上还受吸力,两侧大、中部略小,其平均值约为迎风面风压平均值的75%左右。沿高度方向,风压的变化也很小,更近似于矩形分布;3)整个侧面,在正面风力作用下,全部受吸力,约为迎风面风压的80%左右。

风荷载体型系数表中的正号表示作用在该建筑表面上的风荷载为压力,即力的作用方向指向作用表面,负号表示作用在该建筑表面上的风荷载为吸力,即力的作用方向远离作用表面。

(3)风压高度系数?滋z。风压高度系数?滋z主要反映风速随高度变化的特点。

(4)风振系数?茁z。风振系数?茁z主要反映风作用在结构上时对结构产生了动力效应,但在一般情况中,为筒化计算,将其等效为静力作用,但考虑动力影响,在风荷载计算时引入风振系数。

3.抗震设计基本要求。有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。(1)选择有利的场地,避开不利场地,采取措施保证地基的稳定性;(2)选择合理的结构体系。对于钢筋混凝土结构,一般框架抗震能力较差,框架—剪力墙结构较好,剪力墙结构和筒体结构抗震能力高;(3)平面布置力求简单、规则、对称,避免应力集中的凹角和收进;避免楼、电梯间偏置,尽量减少扭转的影响;(4)尽量避免建筑物竖向体型复杂、外挑内收变化过多,力求刚度均匀,不要刚度突变,避免产生变形集中。当顶层设置大房间、底层部分剪力墙变为框架时,应按专门规定进行设计;(5)结构布置要受力明确,传力途径直接简单;(6)加强结构空间整体性,增加超静定次数,组织多道设防;(7)保证构件的延性,避免脆性破坏(如锚固破坏、剪切破坏等),也要采取措施防止结构在地震中失稳和倾覆;(8)尽量减轻结构自重,减少地基土压力,降低地震作用;(9)保证足够的刚度,满足高层建筑结构允许位移值的要求;(10)调整平面形状与尺寸,采取构造措施和留临时性施工缝(后浇带)的方法,尽量不设防震缝,少设防震缝。

五、结语

高层建筑存在诸多问题,高难度,高技术,高风险都需要大量技术工作人员去解决,本文简单地介绍一些高层建筑的构造及特点,遇到不同的问题用不同的方法去解决。

参考文献

[1]都凤强.高层建筑结构设计的实践探讨[J].科技创新导报,2009,(21).

[2]刘露.对某住宅建筑结构设计的分析[J].沿海企业与科技,2009,(8).

[3]吴晓琳.浅析高层建筑结构设计与特点[J].中国高新技术企业,2009,(11).

[4]何辉,吴祖跃.浅谈高层建筑结构的设计与分析[J].科技创新导报,2009,(13).

[5]李彦明,王红宇.混凝土结构设计的一些常见问题分析[J].科技创新导报,2009,(22).

[6]谭文锐,李达能.高层建筑结构设计中问题之探究[J].广东科技,2007,(6).

[7]杨琦.高层建筑结构特点及其体系[J].沿海企业与科技,2007,(1).

[8]混凝土结构设计规范(GB50010-2002)[S].

猜你喜欢

高层建筑抗震结构设计
古建抗震有绝招
抗震建筑材料简介
BIM结构设计应用
某排水虹吸井结构设计
他成了抗震抢险的先锋