APP下载

从建筑结构设计谈现浇钢筋混凝土楼板的裂缝问题

2009-07-29周文勇

中国新技术新产品 2009年12期
关键词:结构设计建筑设计裂缝

周文勇

摘 要:针对现浇钢筋混凝土楼板易出现裂缝的问题,从建筑结构设计方面对产生裂缝的各种因素进行了探讨,并提出了在设计过程中进行裂缝控制的建议和方法。

关键词:现浇钢筋混凝土楼板;裂缝;建筑设计;结构设计

现浇钢筋混凝土楼板在结构安全和使用功能方面比预制板优越得多,但是楼板裂缝不断增加。大多数消费者对楼板裂缝缺乏必要常识,统视裂缝为有害,担心楼板裂缝会引起建筑物倒塌,反应极为敏感,近年来成为投诉热点,开发商和承包商为此的花费亦逐年增长。

1 楼板裂缝种类

1.1 温差裂缝

由于温度变化,混凝土热胀冷缩而形成的裂缝,此类裂缝一般集中在东西单元的房间、屋面层和上部楼层的楼板。

1.2 结构裂缝

虽然现浇楼板承载力均能满足设计要求,但由于预制多孔板改为现浇板后,墙体刚度相对增大,楼板刚度相对减弱。因此在一些薄弱部位和截面突变处。往往容易产生一些结构性裂缝。例如:墙角应力集中处的45°斜裂缝,板端负弯矩较大处的板面裂缝等。

1.3 构造裂缝

PVC管处混凝土厚度减薄,容易出现裂缝。

1.4 收缩裂缝

混凝土在塑性收缩、硬化收缩、碳化收缩、失水收缩过程中易形成各种收缩裂缝。

2 楼板裂缝形式

2.1 45°斜裂缝

该裂缝常出现在墙角,特别是房屋东西两端房间,呈45°状。

2.2 纵横向裂缝

该裂缝一般出现在跨中、负弯距钢筋端部、PVC电线暗管敷埋处。

2.3 长裂缝

一部分房间预埋PVC电线管的板面上出现裂缝,裂缝宽度达0.2mm~0.3mm左右。这种裂缝仅在楼板表面出现,板底无裂缝。

2.4 不规则裂缝

裂缝出现部位形状无规则,或散状或龟裂状。一般发生在房屋东西两单元、阁楼顶层部位。

3 从设计方面分析裂缝及控制方法

造成现浇钢筋混凝土楼板开裂有设计原因、施工原因、材料原因,本文仅从设计方面进行探讨。随着经济的快速发展、建设任务增加迅猛,勘察设计队伍亦在迅速扩大,住宅工程相当一部分是由乙级和丙级设计单位承担。住宅设计单位低资质,或由于设计市场管理的不到位,造成低资格设计人员挂靠设计,而挂靠单位收取一定比例管理费后,就盲目盖章、签字,根本不对图纸的结构安全、合理性、完整性等认真审核。结果是一部分住宅工程勘察设计质量低下,问题较多。另一个原因是,一些住宅开发商任意压价,片面降低勘察设计费,以收费最低为主要条件选择勘察设计单位,同时又不讲合理设计时间,限期开工,逼迫提前出图,造成施工图设计深度不够,问题必然较多。

3.1 目前与温度有关的裂缝计算公式有:

连续式约束条件下楼板、长板、剪力墙、大底板等最大约束应力计算公式:

σ*xmax=-EaT1-1chβL2H(t,τ)(1)

或按时间增量的计算公式:

σ*xmax=∑ni=1Δσi=-a1-u∑ni=11-1chβiL2ΔTiεi(t)H(t,τ) (2)

当应力超过混凝土的抗拉强度时,可求出裂缝间距:

Lmax=2EHCxarcchaTaT-εp (3)

L=1.5EHCxarcchaTaT-εp(4)

Lmin=12Lmax(5)

式中,T-包含水化热、气温差及收缩当量温差。同号叠加,异号取差,由此可见,夏天炎热季节浇筑混凝土到秋冬冷缩都是叠加的,拉应力较大;

H(t,τ)-松弛系数。在保温保湿养护条件下(缓慢降温即缓慢收缩),松弛系数取0.3或0.5,当寒潮袭击或激烈干燥时,松弛系数取0.8,应力接近弹性应力,容易开裂;

T=T1+T2+T3(T1为水化热温差、T2为气温差、T3为收缩当量差,取代数和);

εp-混凝土的极限拉伸。级配不良,养护不佳,取0.5×10-4~0.8×10-4;正常级配,一般养护,取1.0×10-4~1.5×10-4;级配良好,养护优良,取2×10-4;配筋合理(细一些,密一些),可提高极限拉伸20%~40%。构造配筋宜为0.3%~0.5%;

H-均拉层厚度(强约束区);

E-混凝土弹性模量;

Cx-水平约束系数;

ch、arcch-双曲余弦及双曲余弦反函数;

a-线膨胀系数,一般情况εp≤|aT|,当εp≥|aT|时取εp=|aT|,[L]→∞。

裂缝开展宽度:

δf=2ψEHCxaTthβL2(6)

δfmax=2ψEHCxaTthβLmax2(7)

δf=2ψEHCxaTthβLmin2 (8)

β=CxEH(9)

式中,ψ-裂缝宽度经验系数;

Cx-约束系数。

3.2 住宅长度超长

住宅平面超长,由于温差和材料变形,会造成墙体和楼板横向开裂。仅就长度而言,结构长度与应力呈非线性关系,如结构长度小于规范要求,结构内力影响很小。

3.3 平面形状

当住宅卧室沿长度、宽度方向尺寸变化,由于楼板刚度不一致,会产生不相同变形,引起薄弱部位开裂。

3.4 结构设计方面原因

3.4.1 近代国际上结构的设计原则是,整个建筑结构的功能必须满足两种状态的要求:①承载力极限状态,以保证结构不产生破坏,不失去平衡,不产生破坏时过大变形,不失去稳定。②正常使用极限状态,以确保结构不产生超过正常使用状态的变形、裂缝及耐久性、振动及其它影响使用的极限状态。目前人们对第一极限状态已给于足够重视并严格执行,而对第二种极限状态却经常被忽视。

3.4.2 从钢筋混凝土现浇楼板各种受力体系分析,无论是按单向板设计还是按双向板设计,是单跨还是多跨连续板设计;无论是板端支承在砖墙上还是支承在过梁或剪力墙内,受力状态考虑都是局限于楼板平面的应力变化(按弯矩配置抵抗正、负弯矩的受力钢筋)、板平面的受剪变形。即使是考虑板端嵌固端节点产生弯矩,也只是考虑板平面弯曲或屈曲所产生的应力。在楼板受力体系分析时,对于现浇结构构件之间在三维空间中如何分配内力、协调变形,根本没有考虑。

3.4.3 目前不少设计人员只按单向板计算方法来设计配置楼板钢筋,支座处仅设置分离式负弯矩钢筋。由于计算受力与实际受力情况不符,单向高强钢筋或粗钢筋使混凝土楼面抗拉能力不均,局部较弱处易产生裂缝。部分设计人员对构造配筋,放射筋设置不重视或不合理,薄弱环节无加强筋。

3.4.4 结构设计对板内布线引起裂缝的构造考虑不够。住宅电器、电信快速发展的今日,现浇楼板内暗敷PVC电线管越来越多,甚至有些部位三根交错叠放,两根管交错叠放更为普遍。PVC管错叠处板的抗弯高度大大降低,从而减弱了板的抗弯性能。

3.4.5 对开口楼板,特别是开洞口比较大的双向板,设计时往往只考虑楼板在竖向荷载作用下的洞口四周加强配筋。由于纵向的受力钢筋被切断,而忽视了板与墙体或板与梁的变形协调问题。这时如墙或梁的刚度较大,板的孔边凹角处未必出现应力集中现象,开洞板易发生翘曲。

结语:

现浇钢筋混凝土楼板裂缝是工程常见的质量通病,只有在设计过程中针对各影响因素考虑全面、细致,严格遵守设计规范,才能大大减少现浇钢筋混凝土楼板产生裂缝的可能。

猜你喜欢

结构设计建筑设计裂缝
碳酸盐岩裂缝描述七大难点
完美“切割”,裂缝之谜
地球的裂缝
建筑设计的困惑
建筑设计中节能建筑设计的分析
BIM结构设计应用
某排水虹吸井结构设计
探讨居、商、景一体化的建筑设计